复经验正交函数分析结果的直观显示*

王盘兴 吴洪宝 徐建军" (南京气象学院气象学系,南京,210044)

摘要 对复经验正交函数分析结果显示作了改进,导出了时空振幅、位相函数,并给 出了时空振幅位相函数图。试验及实际分析表明,它具有直观性。 关键词 复经验正交函数分析,直观显示法,时空振幅位相函数图 分类号 P434

复经验正交函数分析方法(简称 CEOF 方法)最早由 Rosmusson 引入气象问题的分析^[1], 国外 Barnett 对此方法的原理及应用作了系统的阐述^[2],国内黄嘉佑对此作了详细的介绍^[3]。

根据文献[2、3],CEOF 方法的明显优点是,它可以仅通过一个"特征"(指特征值、特征向 量及其时间系数序列)描述系统或波动的强度和位置的时空变化特征。但近年来的实践表明, CEOF 方法在国内只得到有限的应用^{14.5}。究其原因,可能在于:(1)方法涉及复数域上的运算, 实施过程比轻复杂;(2)已存在一类实域上的经验正交函数分析方法(简称 EOF 方法),如扩展 的经验正交函数分析方法(简称 EEOF 方法[9]),它同样可以用一个"特征"描述系统或波动强 度和位置的时空变化特征,而其实施过程要较 CEOF 方法简单得多;(3)CEOF 方法分析结果 的传统显示方法(以文献[2]为例)缺乏直观性。

我们认为,文献[2]给出的 CEOF 方法采用希尔伯特(Hilbert)变换构造 t 时刻场的虚部, 从而将场随时间变化的全部信息引入到该时刻复变量场中,这较 EEOF 方法中资料处理明显 地优越。而其实施过程的复杂性问题,也因有现成的标准化程序而不难解决。因此,本文不讨 论前两个问题,而集中解决第三个问题。并且认为,读者对文献[2、3]的基本内容已经掌握。

- CEOF 方法简介 1
- 1.1 CEOF 方法计算步骤

按文献[2],一个实标量场的时间序列

$$f(t,s), t = 1 - L \sim m + L, s = 1 \sim n$$
 (1)

其中,t为时间序数,s为空间点序数,L为与 Hilbert 变换有关的参数。f(t,s)的 CEOF 方法的 计算主要由下面 5 步组成。

(1)构造与 f(t,s)相对应的复变量场序列 F(t,s)。这里

$$F(t,s) = f(t,s) + if(t,s), t = 1 \sim m, s = 1 \sim n$$
(2)

[◆] 本工作属国家自然科学基金项目

十二下得留家日派行子金金戏目 南京气象学院1991届毕业生李曙光、1992届毕业生徐春燕参加了本文部分计算工作 收稿日期,1993-07-20,改回日期,1993-10-30

其中虛部 $\hat{f}(t,s)$ 由 f(t,s)经时域上的 Hilbert 变换得到 $\hat{f}(t,s) = \sum_{l=-L}^{L} f(t-l)h(l)$ (3) Hilbert **变换的**时间函数为

$$h(l) = \begin{cases} \frac{2}{\pi l} \sin^2 \frac{\pi l}{2}, & l \neq 0\\ 0, & l = 0 \end{cases}$$
(4)

可以证明,当 $L \to \infty$ 时, \hat{f} (t,s)由 f(t,s)所有频率上的波分量保持振幅不变,而位相均滞后 π/2 构成。实际计算中 L 取 7~25^[2](本文计**算取** L=23),由此得到的 \hat{f} (t,s)较 f(t,s) 的方差略 有损失,而位相滞后 π/2 的性质保持较好。

(2)求 F(t,s)的自相关函数矩阵 A,若记

$$F(t,s) = \begin{bmatrix} F_{11} & F_{12} & \cdots & F_{1n} \\ F_{21} & F_{22} & \cdots & F_{2n} \\ & & \cdots & & \\ F_{m1} & F_{m2} & \cdots & F_{mn} \end{bmatrix}$$
(5)

则其自相关函数矩阵

$$A = F^{\mathsf{T}}F^{\mathsf{T}} \tag{6}$$

角标"T"、"*"分别为转置、共轭算符。A的元素

$$A_{i_1i_2} = \sum_{i=1}^{n} F(t, s_1) F^*(t, s_2)$$
(7)

容易证明, A 为 Hermite 矩阵($A = A^{H}$, H 共轭转置号)。

(3)求 A 的特征值(λ_i)、特征向量(Z_k)。由 Hermite 矩阵性质知,它存在非负特征值(已作 非升序排列)

$$\lambda_h, h = 1 \sim H \tag{8}$$

及对应的特征向量

$$Z_{h} = (Z_{h1} \quad Z_{h2} \quad \cdots \quad Z_{hn}) \tag{9}$$

且特征向量满足正交性

$$(Z_{k}, Z_{k'}) = Z_{k} Z_{k'}^{H} = 0, h \neq h'$$
(10)

并作了标准化处理

$$(Z_{k}, Z_{k}) = Z_{k} Z_{k}^{H} = 1$$
(11)

(8)式中 H 为"特征"总个数。对实际问题,若(1)为距平场时间序列,则一般有

 $H=\min(n,m-1)$

$$T_{k} = (T_{k1} T_{k2} \cdots T_{km})^{\mathsf{T}}$$
(12)

它与 F、Z, 的关系记为

 $F = \sum_{k=1}^{H} T_k Z_k \tag{13}$

以 Zt 左乘(13)、并由(10)、(11)式得

$$T_{\star} = F Z_{\star}^{\mathsf{H}} \tag{14}$$

(5)由入作误差分析。F的总方差

$$S = \sum_{\mu=1}^{n} A_{\mu} \tag{15}$$

449

第 h(前 h)个特征向量 Z,对 F 的总方差的拟合率 ρ,(P,)为

$$\rho_{k} = \lambda_{k}/s; P_{k} = \sum_{k'=1}^{n} \lambda_{k'}/s$$
(16)

这与 EOF 方法一致。至此,我们得到了

$$\lambda_{h}(\mathbf{g} \ \rho_{h}, P_{h}) \ Z_{h}, T_{h}, h = 1 \sim H \tag{17}$$

它们是实标量场时间序列 f(t,s)的 CEOF 分析结果。

1.2 举 例

为讨论方便起见,类似于文献[2],构造一个物理过程清楚的、供试验用的 f(t,s),并按上 述步骤给出其 CEOF 分析结果。

设 f(t,s)定义在一维空间区域 D 和时域 T 上。简单地以 D 为直线线段,且为等距(Δx)格 点 $s=1\sim 8$ 分割,s 自西向东增大;时域 T 也被等间隔(Δt)分割,对于 L=23,时序点 $t=-22\sim$ 47。因此,n=8,m=24。

f(t,s)由两个部分(f_1, f_2)合成,其中,

$$f_1(t,s) = A_1(s)\cos(\frac{2\pi}{8}s + \frac{2\pi}{24}t), \quad A_1(s) = 4$$
 (18)

$$f_{2}(t,s) = A_{2}(s)\cos(\frac{2\pi}{4}s - \frac{2\pi}{6}t), \quad A_{2}(s) = \begin{cases} 3, & s = 3\\ 1, & s = 6\\ 2, & s \neq 3, 6 \end{cases}$$
(19)

可见, f_1 的振幅固定,以相速 $C_1 = -1/3$ 单位传播(西行波); f_2 的振幅依赖于空间位置,以相速 $C_2 = 2/3$ 单位传播(东行波)。相速单位为:格距/时段。

试验例子的 CEOF 分析结果列于表 $1a\sim c$ 。表 1b、1c 中, $\zeta_{h}(s)$ 、 $\phi_{h}(s)$ 是第 h 个特征向量在 s点上分量 $Z_{h}(s)$ 的模、幅角; $\eta_{h}(t)$ 、 $\varphi_{h}(t)$ 是第 h 个时间系数在 t 时刻的分量 $T_{h}(t)$ 的模、幅角。显 然,这里采用了复数的指数表示形式。

	h 1 2		کم 2780 789		<i>Ρ</i> . 0. 7773 0. 2206			Ph		
							·	0.7773		
							0. 9979			
				表 1b 讨	式验例子的	か <i>て</i> 。				
h	s .	1	2	3	4	5	6	7	8	
1	ζ1(s)	0.347	0.356	0. 357	0. 347	0, 359	0.352	0.351	0.359	
	$\psi_1(s)$	225°	271°	314°	1°	46°	9()°	136°	180°	
2	ζ2(5)	0.365	0.335	0.507	0.365	0.322	0.181	0.352	0.322	
	$\psi_2(s)$	90°	5°	269°	183°	93°	355°	275°	180°	

表 la 试验例子的 λ_h、p_h、P_h

表 1c 试验例子的 T,

	h =	= 1	h =	h=2
ľ	$\eta_1(t)$	$\varphi_{1}(t)$	$\eta_2(t)$	$\varphi_2(t)$
1	10. 91	196°	5.72	241°
2	10. 63	211°	5.87	300°
3	10. 41	225°	5.87	359°
:	:	:	÷	÷
24	11.10	180°	5.50	180°

2 分析结果的传统显示方法

称文献[2]给出的 CEOF 分 析结果的显示方法为传统显示方 法。该方法几乎为所有文献采用。因 为 CEOF 分析中方差拟合率的显示 与 EOF 方法相同,故这里只对 Z_{*}、 T_{*} 的传统显示方法作讨论。

图 1、2 分别给出试验例子中 h=1、2 的 Z_h 和 T_h 的两种显示方法。 其中,图 a 所用的方法可称作"标量 法",它将振幅和位相分开表示;图 b 所用的方法称为"状态向量法", 它直接将复变量在复平面上对应的 向量移植到空间点或时间轴上。对 于二维空间场、 Z_h 用 ζ 或 ϕ 的二维 空间等值线图或状态向量图^[2]表 示。图 a 或图 b 的共同特点是强调 了 Z_h 只依赖于空间位置 s、 T_h 只依 赖于时间序数 t,传统显示方法强调

图 1 试验例子 Z1、T1的传统显示 a. 标量法;b. 状态向量法

这一理论结果。故该显示方法亦可称为时空分离式显示方法。

将(14)式中 F, 在(t,s)点上的值 F,(t,s)写作复指数形式(符号与表 1b、1c 一致)

 $F_{h}(t,s) = Z_{h}(s)T_{h}(t) = \zeta_{h}(s)e^{i\varphi_{h}(t)}\eta_{h}(t)e^{i\varphi_{h}(t)} = \{\zeta_{h}(s)\eta_{h}(t)\}e^{i(\varphi_{h}(t)+\varphi_{h}(t))}$ (20) 其时空振幅函数和时空位相函数分别记为

$$A_{\mathbf{k}}(t,s) = \zeta_{\mathbf{k}}(s)\eta_{\mathbf{k}}(t) \tag{21}$$

$$\Theta_{h}(t,s) = \psi_{h}(s) + \varphi_{h}(t)$$
(22)

根据(21)、(22)式,在传统显示方法中,为了显示 F,中振幅(用于显示强度)的时空结构, 需要作图的乘法;为了显示 F,中的位相(用于显示移动或传播)的时空结构,需要作图的加法。 而这些图运算都是通过思维进行的,缺乏直观性。这在位相时空结构分析中尤其明显。

由 $\phi_h(s)$ 、 $g_h(t)$ 图象特点定性确定相速的办法可总结为:1)若 $\phi_h(s)$ 、 $g_h(t)$ 随 s、t 增大的趋势 相同(d ϕ_h/ds 、d g_h/dt 同号),则波动逆 s 方向传播,图 1(F_1)即属此例;2)若 $\phi_h(s)$ 、 $g_h(t)$ 随 s、t 增 Z_2

大的变化趋势相反(du/ds、dg./dt 异号),则波动顺 s 方向传播,图 2 (F₂)即属此例。上述规则似乎很简 单,但实际问题中, $\psi_{s}(q_{s})$ 随 s(t)的 变化趋势对于不同的(t,s)可以是多 变的。因此,采用传统方法显示 CE-OF 分析结果很难直观地得到运动 主要特点时空结构的全貌。对试验 例子,因分析对象本身不复杂,该问 题可能不很突出。而对实际资料的 分析,这个问题相当突出。

结果的直观显示方法 3

对空间一维场时间序列的 CEOF 分析(如试验例子)的结果, 可以给出其直观显示方法。注意到: (1)(21)、(22)式的 A,(t,s)、O,(t,s) 完整给出了分量F,的振幅、位相的 时空结构,从而包含了运动强度、移 动(传播)的全部信息;(2)对空间一维场,A, (t,s)、 $O_{\bullet}(t,s)$ 的结构及配置可以由时、空剖 面图给出。相对于传统显示方法,直观显示 方法可称为时空合成式显示方法。直观显示 方法的基本工具是时空振幅位相函数图(简 称为 AP. 图)。

制作了试验例子的 AP,, h=1,2 图。AP, 图(图略)显示了一个振幅时空均匀、缓慢西 移的长波(相对于 F₁)。AP₂(图 3)显示了一 个振幅存在空间差异、快速东传的短波(相 对于 F₂)。与图 1、图 2 相比,振幅,特别是位 相的时空结构及其相互配置一目了然。

应用举例 4

用 ECMWF 格点每日一次的 850hPa u 客观分析资料求得赤道太平洋格点($\varphi=0^\circ$,

图 3 AP2 图 图中粗实线为 A2 的等值线,间隔为 0.5 $\lambda = 90^{\circ}E, 95^{\circ}E, 100^{\circ}E, \cdots, 90^{\circ}W; s = 1 \sim 37$), 1980~1984 年逐候平均场(空间一维场)时间序列。用 Murakami 的滤波法^[7]从中分离出准 40 天振荡分量($\Delta t = 1$ 候, $\omega_t = 2\pi/9$, $\omega_t = 2\pi/6$)。用 Hilbert 变换从中得到北半球 4 个冬季(定义为 11 月第1 候~次年3月第2 候,t=1~26)、4 个夏季(定义为4月第6 候~9月第1 候,t=1

图 2 试验例子 Z₂、T₂ 的传统显示 a. 标量法 ;b. 状态向量法

17 卷

~26)的复变量序列。它们中的每个可写作 F(t,s),t=1~26,s=1~37。CEOF 分析对每个这样的场序列进行,其方差分析如表 2。由表 2,不同年分和季节的第1特征向量对总方差的拟合率均超过 50%。因此,CEOF分析的结果中第1特征对认识赤道上 u 准 40 天振荡的特点是重要的。图 4a、b 分别给出了 1980~1981 年冬季、1981 年夏季第1 特征的 AP 图(记为 AP₁)。它表 2a 冬季赤道上 u 准 40 天振荡分量 CEOF 分析的 s/m² • s⁻²和 ρ₄

	1980~1981 年	1981~1982年	1982~1983 年	1983~1984 年
5	3772	1980	2417	1298
ρι	0. 8146	0. 6002	0.6096	0.5027
ρ	0.1075	0. 2864	0. 2476	0. 2817
ρ ₃	0.0468	0.0554	0. 0848	0. 1281
$\sum_{h=1}^{3} \rho_{h}$	0. 9690	0. 9420	0. 9420	0.9125
表 2b 夏	三季赤道上 u 准 40) 天振荡分量 CE	COF 分析的 s/m²	• s ⁻² ħο ρ _h
	1980年	1981年	1982 年	1083年
5	1298	2464	2249	1055
P۱	0.5169	0.6174	0.6130	0.5640
ρι	0. 2329	0. 2727	0. 2637	0.1942
ρ3	0.1786	0.0596	0. 1007	0.1360
$\sum_{k=1}^{3} \rho_{k}$	0. 9284	0. 9497	0. 9774	0. 8942

图 4 850hPa u分量准 40 天振荡 CEOF 分析的 AP1 图 a. 1980~1981 年冬季;b. 1981 年夏季 图中细实(慮)线为 0°(180°)等位相线,点划线为等振幅线

表明:(1)准 40 天振荡沿赤道传播的方向存在地区差异。如图 4a 西传占优势(120°E~140°W, 110°W 以东).东传是局部的(120° 以西,140°W~110°W);图 4b 则以东传为主(120°E 以东), 只在局部地区(100°E 以西)例外。(2)准 40 天振荡的传播速率也存在明显的地区差异。除在 100~130°E 间(对应南洋群岛或印度洋、太平洋交界处)东传速率极小外,其余区域东传速率 均较大。(3)准 40 天振荡强度存在明显区域及季节变化。某些区域(冬季1处,夏季3处)容易 出现强振荡,但不始终维持。

5 讨 论

直观显示法形式上只适用于空间一维场时间序列的 CEOF 分析结果显示。但由于实际大 气中重要的系统(波动)移动(传播)一般沿某一路径(波导)进行,它们可以化作一维问题处理。 当必须对空间二维场序列作 CEOF 分析时可以在得到它们的分析结果后,在空间图上选择若 干条带有特征的路线,如二维 Rossby 波的大圆路径¹⁸,将其上的 Z_{*}(此时为空间一维场)与同 一 T_{*} 组成若干幅 AP_{*} 图,从而将一个空间二维场序列的 CEOF 分析结果用若干张 AP_{*} 图直 观扼要地显示出来。

参考文献

- 1 Rasmusson E M, Arkin P A, Chen W Y. Biennial variations in surface temperature over the United States as revealed by singular decomposition. Mon Wea Rev, 1981, 109:587~598
- 2 Barnett T P. Interaction of the Monsoon and Pacific trade winde system at interannual time scales, Part I: The equatorial zones. Mon Wea Rev, 1983, 111:756~773
- 3 黄嘉佑.复经验正交函数(CEOF)及其在天气过程诊断分析中的应用.气象,1988,14(5);3~8
- 4 黄嘉佑.准两年振荡在我国月降水量中的表现.大气科学,1988,12:267
- 5 缪金海,刘家铭.东亚夏季风降水中 30-60 天低频振荡.大气科学,1991,15(5):65~71
- 6 Weare B C , Nasstrom J S. Examples of extended empirical orthorgonal function analyses. Mon Wea Rev, 1982, 110: 481~485
- 7 Murakami M. Large-scale aspects of deep convection activity over the Gate area. Mon Wea Rev, 1979, 107, 994~1013
- 8 王盘兴,徐建军,李曙光等、准 40 天振荡沿指定路径传播的 CEOF 分析、应用气象学报,1993,4(增刊);39~44

VISUAL DISPLAY OF COMPLEX EOF ANALYSES

Wang Panxing Wu Hongbao Xu Jianjun

(Department of Meteorology, NIM, 210044, Nanjing, PRC)

Abstract The display of complex empirical orthogonal function (EOF) analyses has been improved, deriving amplitude/phase functions on space/time basis, with the space/time amplitude / phase functions diagrams given in this paper. Experiments and real case analyses indicate their visuality quite well.

Keywords complex EOF analyses.visual display technique, time amplitude/phase function diagrams