2011, 34(5): 513-528. DOI: 10.13878/j.cnki.dqkxxb.2011.05.004
摘要:利用中国区域437站1958-2005年逐日气温和降水资料,评估了国家气候中心(Beijing Cli-mate Center,BCC)气候模式对中国近50a极端气候事件空间分布、时间演变等方面的模拟能力。结果表明:1)模式对极端温度和降水多年平均的空间分布具有一定的模拟能力,但尚存在系统性的偏差。暖昼日数的模拟优于冷夜日数,全年冷夜日数的模拟优于冬季和夏季的模拟,而全年和夏季暖昼日数的模拟优于冬季的模拟。极端降水频次的模拟优于极端降水量的模拟;夏季和全年的模拟优于冬季的模拟。夏季极端降水频次的模拟较好,但冬季的模拟在长江中下游和华南偏小、北方偏大,而全年的模拟在长江下游及南部沿海地区系统性偏大;夏季和全年极端降水量的模拟系统性偏低,而冬季在北方偏高、南方偏低。2)模式较好地模拟出了夏季和全年冷夜日数的全国较为一致的减少趋势,再现东北和东南沿海地区冬季冷夜日数的减少趋势,但模拟的趋势较实测偏弱。模式对暖昼日数长期趋势的模拟效果较理想,较好地反映出了大部分地区暖昼事件发生频率显著增加的特征,但冬季的模拟尚有待改进。模式较好地模拟出了夏季和全年极端降水频次的长期趋势,较好地刻画了极端降水频次"南增北减"的特征;模式对冬季极端降水频次的变化趋势几乎无模拟能力。同样,模式也较好地模拟出了极端降水量夏季南增北减的分布形势和冬季的总体增加趋势,但对全年的模拟不理想。3)模式能较好地模拟出冷夜日数和暖昼日数异常变化的主要空间型,对EOF第一模态的时间演变特征具有一定模拟能力;但模式对第二模态时间演变特征的刻画能力较差。模式对极端降水指标的年际变化具有一定的模拟能力,对部分区域极端降水事件的年际变化具有较好的模拟能力;但模拟能力表现出了明显的区域性差异,部分区域极端降水年际变化的模拟结果与实况甚至相反,模式对极端降水年际变化的模拟能力还有待提高。所得结果可为BCC气候模式的改进及极端气候模拟、预估提供一定的参考。
2011, 34(5): 529-537. DOI: 10.13878/j.cnki.dqkxxb.2011.05.005
摘要:利用条件非线性最优扰动(conditional nonlinear optimal perturbation,CNOP)可以实现最大预报误差的上界估计。CNOP通常由基于梯度信息的约束优化算法进行求解,且其中的梯度信息由伴随模式提供。然而当非线性模式中含不连续"开关"时,传统伴随方法不能为优化过程提供正确的梯度方向,从而导致优化失败。为此,采用自适应变异和混合交叉的遗传算法,联赛选择机制和小生境技术的约束处理方法来求解最大预报误差上界。为检验新方法的有效性,以修改的Lorenz模型作为预报模式,对3个初始态分别用新方法和传统伴随方法进行比较,数值试验结果显示新方法求解出的最大预报误差的上界更加精确。
2011, 34(5): 538-546. DOI: 10.13878/j.cnki.dqkxxb.2011.05.006
摘要:综合利用1978-2011年TOMS(Total Ozone Mapping Spectrometer)和OMI(Ozone Monitoring Instrument)臭氧总量资料,MLS(Microwave Limb Sounder)臭氧廓线资料以及NCEP/NCAR再分析气象场资料,对比研究了近30a南北极臭氧总量的年际变化和季节变化差异,重点分析了2010/2011年冬末春初北极臭氧出现的异常损耗现象,探讨北极春季臭氧低值产生的原因。结果表明:与南极地区一年四季都保持一个臭氧低值中心明显不同,北极臭氧总量的减少则是伴随着整个春夏季(4-8月),在秋季(10月)达到最低值,冬季(11月-次年2月)北极臭氧快速恢复,这主要是由于南北半球极地地区环流差异和温度差异造成的。南北两极年均O3总量呈下降趋势,两极地区O3总量年际变化最大的季节是春季。近30a,北极在1997和2011年春季(3-4月)分别达到极低值355DU和361DU,但近年来两极臭氧年际变化趋势不明显。2011年春季,北极地区出现的较严重臭氧低值现象从3月中旬至4月中旬持续了近1个月,2010/2011年冬春季平流层低温和臭氧低值对应关系很好。
2011, 34(5): 547-554. DOI: 10.13878/j.cnki.dqkxxb.2011.05.007
摘要:采用1958年1月-2001年12月ECMWF ERA-40的10m风场资料,以及由该风场资料驱动WAVEWATCHⅢ得到的北印度洋-南海海域44a的海浪场资料,通过EOF分析、正交小波分析和M-K检测方法,分析了北印度洋-南海海域海面风场和有效波高的年代际变化特征。结果表明:北印度洋-南海海域存在3个大风、大浪区,其中亚丁湾以东洋面风力最强,有效波高最高;表面风场和有效波高存在35、15和3a的主周期变化,并自20世纪70年代中期以来,年平均风场和有效波高均存在明显增强趋势,1977年为突变起始年;年平均海表10m风速和有效波高随时间增大主要是由冬季和春季海表10m风速和有效波高随时间增大引起的;冬、秋季海面风场与有效波高的年际、年代际变化周期较一致,冬季以35~40a的周期为主,秋季以11~12a的周期为主。
2011, 34(5): 555-566. DOI: 10.13878/j.cnki.dqkxxb.2011.05.008
摘要:从考虑水汽凝结潜热作用的两维非静力平衡方程组出发,利用江陆边界条件,从理论上求得适用于陆地水体的解析解。结果表明,当0 < k < 1.0℃·km-1时(k为水汽凝结潜热),江风环流比陆风环流强,两岸比江面容易形成暴雨;当k < 1.0℃·km-1时,江风环流比陆风环流弱,江面比两岸容易形成暴雨;当0.5℃·km-1≤k≤0.9℃·km-1时,江陆面上方低层易出现大风。在江陆风环流中心附近流线出现与锋面类似的间断面,可用于解释雷达图上的海陆面上空类切变线的线状回波。此回波与冷锋相遇,易形成暴雨。
2011, 34(5): 567-573. DOI: 10.13878/j.cnki.dqkxxb.2011.05.014
摘要:针对常规克里金插值方法中变异函数为有限确定函数,难以准确刻画实际数据分布(特别是复杂要素资料的空间结构)的不足,基于最小二乘支持向量机从实际资料场中拟合重构变异函数的研究思想,提出了一种改进的插值方法——支持向量机-克里金插值算法(SVM-Kriging)。采用常规的克里金方法和支持向量机-克里金插值方法(SVM-Kriging)进行插值试验和对比分析,结果表明:支持向量机-克里金方法(SVM-Kriging)的变异函数源自实际的数据场,它克服了常规克里金插值对变异函数选择的依赖性以及变异函数选择的主观性和人为性,表现出较好的针对性和客观性,较为有效地改善了插值效果。
2011, 34(5): 574-582. DOI: 10.13878/j.cnki.dqkxxb.2011.05.009
摘要:利用1958-2007年全球海温、位势高度场月平均资料和我国东北地区64个测站的春季地面气温资料,分析了我国东北地区春季极端低温的时空变化特征及其与大气环流和海温异常的关系。结果表明:近50a来,我国东北春季极端低温事件频数整体呈减少趋势;极端低温频数主要存在全区一致变化型和南北反相变化型两种模态;极端低温事件频数与北极涛动存在显著负相关关系,同时在极端低温多年,极涡较弱,乌拉尔山阻塞高压偏强,东北冷涡较强,反之亦然;影响我国东北地区春季极端低温的关键海区为中北大西洋海区,极端低温多年,中北大西洋海温较常年偏冷,反之则中北大西洋海温较常年偏暖。这对于预测东北春季极端低温事件的年际变化具有很好的指示意义。数值试验结果表明,中北大西洋海温异常可激发欧亚波列,致使中国东北温度异常。
2011, 34(5): 583-591. DOI: 10.13878/j.cnki.dqkxxb.2011.05.001
摘要:从基于云角色的分类思想出发,利用星载毫米波雷达探测资料提取云的特征参数,建立支持向量机(support vector machine,SVM)模型实现云的分类。通过与BP(back propagation)网络模型的分类结果进行对比,发现两种模型都具有较好的分类能力,但SVM模型的识别准确率更高,计算速度更快。基于CloudSat资料的云分类实例表明,SVM模型的分类结果与CloudSat数据处理中心(Data Processing Center,DPC)发布产品具有很好的一致性。
汪玲玲 , 牛生杰 , 贾然 , 柯怡明 , 杨志彪 , 熊守权
2011, 34(5): 592-596. DOI: 10.13878/j.cnki.dqkxxb.2011.05.010
摘要:利用湖北省77个测站1961-2007年气象资料,分析了积雪的时空特征。结果表明,湖北省积雪年际变化振幅明显,20世纪60年代到70年代中期缓慢增加,为积雪多发期;80年代年波动较大;90年代开始明显减少。月积雪日数呈准正态分布,1月最多,2月、12月次之。积雪空间分布表现为西部多,中东部少;山地多,丘陵平原少;沿江多,内陆少。有利于湖北大范围出现积雪的大尺度背景的环流类型主要有纬向型和两槽一脊型。出现积雪时24h变压Δp24为正,24h变温Δt24和水汽压变化Δe24为负,地面气象要素的异常变化,也可以作为积雪预报的着眼点之一。
2011, 34(5): 597-605. DOI: 10.13878/j.cnki.dqkxxb.2011.05.015
摘要:利用美国国家海洋大气总局/美国国家环境预报中心(NOAA/NCEP)发布的最新版WAV-EWATCHⅢ(version3.14)海浪模式对0801号台风"浣熊"进行数值模拟,并在此基础上对台风浪的发展过程和台风影响下的海面有效波高、风浪场及涌浪场的分布特征进行分析。结果表明:海面有效波高的分布和演变受台风系统强度和移动的影响;台风过程中所产生的大浪主要为风浪;涌浪场的分布与风浪场的分布几乎相反,涌浪场基本分布在远离台风中心的外围海域;涌浪场波高比风浪场波高要小。
杨素英 , 马建中 , 胡志晋 , 金莲姬 , 许潇锋 , 高蒙
2011, 34(5): 606-613. DOI: 10.13878/j.cnki.dqkxxb.2011.05.002
摘要:在UWyo单组分气溶胶的绝热气块分档云模式基础上,发展了多种化学组分气溶胶的绝热气块分档云模式。利用2006年春季华北地区地面气溶胶分级采样的离子成分分析数据和同时段高空气溶胶、云微物理飞机观测资料,研究了气溶胶混合状态对暖云微物理特征的影响。模拟结果表明,华北地区气溶胶内部混合比外部混合有利于增加云凝结核数浓度、降低气块水汽最大饱和比、增加云滴数浓度。气溶胶的混合状态不同,形成的云滴谱的特征差异较大,主要体现在云滴谱的平均尺度和峰值的突出程度;云滴谱相对离散度在0.3附近变化,且随着云滴数浓度的增加,云滴谱相对离散度呈现减小的趋势。气溶胶混合状态能够影响暖云微物理特征,从而影响大气辐射和降水过程,在天气和气候变化的研究中应予以关注。
王爽 , 张宏升 , 吕环宇 , 潘江勇 , 蔡丽娜 , 董蔷薇
2011, 34(5): 614-620. DOI: 10.13878/j.cnki.dqkxxb.2011.05.011
摘要:利用大连机场地面观测资料、Micaps系统下常规资料、探空资料和NCEP/NCAR全球再分析资料,从天气形势和背景、探空资料分析和物理量诊断方面,对2009年11月30日-12月2日发生在大连地区持续性大雾天气过程做了详细分析。结果表明,本次持续性雾过程属于辐射平流雾,是在稳定的大尺度天气背景下形成的。探空资料表明,大雾发生过程中,边界层内出现一层逆温和多层逆温;边界层内近地层的逆温和充沛的水汽条件对雾的形成和长时间的维持起着重要的作用。热力结构分析表明,温度日较差大表明地面辐射冷却对本次大雾过程具有明显的作用;低层持续的弱暖平流输入,有利于近地层逆温的建立和维持。动力场结构分析表明,在中低层,大雾发生前期和维持时期,存在弱的辐合上升运动;在大雾消散期,存在明显的辐散下沉运动。水汽条件分析表明,增湿和冷却使此次大雾过程中水汽达到饱和状态产生凝结,在大雾过程的前期,存在弱的水汽辐合;在大雾消散期,存在水汽辐散。
2011, 34(5): 621-626. DOI: 10.13878/j.cnki.dqkxxb.2011.05.012
摘要:位涡作为一个综合反映流体动力学和热力学性质的物理量,受到气象学者的广泛关注,位涡反演理论逐渐成为台风研究的重要方法之一。在简要回顾近几十年来位涡反演理论研究进展的基础上,综述了位涡反演理论在台风领域中的应用进展情况,讨论了位涡反演理论应用时可能存在的问题,即位涡平均态求取、近地面摩擦作用以及位涡反演平衡条件等都可能影响反演效果,并对位涡反演理论的应用前景作了展望。
2011, 34(5): 627-636. DOI: 10.13878/j.cnki.dqkxxb.2011.05.013
摘要:对北半球不同地区的积雪分布状况、积雪异常影响中国气候的事实以及影响机理等问题的研究成果进行了较系统的回顾与总结。青藏高原、蒙古高原、欧洲阿尔卑斯山脉及北美中西部是北半球积雪分布的关键区,其中青藏高原是北半球积雪异常变化最强烈的区域。中国积雪分布范围广泛,其中新疆、东北和青藏高原是3个大值区。总体来看,北半球积雪有减少的趋势,而中国积雪却有弱的增加趋势。冬、春季高原积雪与欧亚积雪对中国夏季降水的影响是相反的。积雪影响中国气候的机理解释为:冬季积雪反照率效应起主要作用,春夏季积雪水文效应起主要作用。积雪被视为中国短期气候预测的一个重要物理因子,继续加强该领域的研究对于提高中国短期气候预测的准确率将有重要意义。
2011, 34(5): 637-639. DOI: 10.13878/j.cnki.dqkxxb.2011.05.003
摘要:AIRS卫星数据集简介1资料概况2011年4月,南京大气资料服务中心从NASA戈达德地球科学数据和信息服务中心(Goddard Earth Sciences Data and Information Services Center,简称GES DISC)引进了AIRS(Atmospheric Infrared Sounder)卫星资料,包括AIRS标准反演产品全球1°×1°格点日值数据集、AIRS标准反演产品全球1°×1°格点月值数据集。
地址:江苏南京宁六路219号南京信息工程大学 邮编:210044
联系电话:025-58731158 E-mail:xbbjb@nuist.edu.cn QQ交流群号:344646895
大气科学学报 ® 2024 版权所有 技术支持:北京勤云科技发展有限公司