en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
通讯作者:

马红云,E-mail:mhypony@126.com

中文引用: 马红云,韩路杰,顾春利,2020.云凝结核对南京及周边地区夏季暴雨影响的数值模拟[J].大气科学学报,43(5):897-907.

英文引用: Ma H Y,Han L J,Gu C L,2020.Numerical simulation on impact of cloud condensation nuclei on summer rainstorm in Nanjing and its surrounding areas[J].Trans Atmos Sci,43(5):897-907.doi:10.13878/j.cnki.dqkxxb.20180111001.(in Chinese).

参考文献 1
Bell T L,Rosenfeld D,Kim K M,et al.,2008.Midweek increase in US summer rain and storm heights suggests air pollution invigorates rainstorms[J].J Geophys Res,113(D2):D02209.
参考文献 2
陈倩,银燕,金莲姬,等,2013.气溶胶影响混合相对流云降水的数值模拟研究[J].大气科学学报,36(5):513-526.Chen Q,Yin Y,Jin L J,et al.,2013.A numerical simulation study on the effect of aerosol layers on mixed phase convective cloud and precipitation[J].Trans Atmos Sci,36(5):513-526.(in Chinese).
参考文献 3
陈思宇,黄建平,付强,等,2012.气溶胶对我国中东部地区秋季降水的影响[J].热带气象学报,28(3):339-347.Chen S Y,Huang J P,Fu Q,et al.,2012.Effects of aerosols on autumn precipitation over mid-eastern China[J].J Trop Meteor,28(3):339-347.(in Chinese).
参考文献 4
陈卫东,付丹红,苗世光,等,2015a.北京地区城市环境对云和降水影响的个例数值模拟研究[J].地球物理学进展,30(3):983-995.Chen W D,Fu D H,Miao S G,et al.,2015a.Numerical simulation of urban environment impacts on clouds and precipitation in Beijing[J].Prog Geophys,30(3):983-995.(in Chinese).
参考文献 5
陈卫东,付丹红,苗世光,等,2015b.北京及周边城市气溶胶污染对城市降水的影响[J].科学通报,60(22):2124-2135.Chen W D,Fu D H,Miao S G,et al.,2015b.Impacts of aerosols from Beijing and the surrounding areas on urban precipitation[J].Chin Sci Bull,60(22):2124-2135.(in Chinese).
参考文献 6
Colarco P,da Silva A,Chin M,et al.,2010.Online simulations of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depth[J].J Geophys Res,115(D14):D14207.
参考文献 7
董昊,徐海明,罗亚丽,2012.云凝结核浓度对WRF模式模拟飑线降水的影响:不同云微物理参数化方案的对比研究[J].大气科学,36(1):145-169.Dong H,Xu H M,Luo Y L,2012.Effects of cloud condensation nuclei concentration on precipitation in convection permitting simulations of a squall line using WRF model:sensitivity to cloud microphysical schemes[J].Chin J Atmos Sci,36(1):145-169.(in Chinese).
参考文献 8
段婧,毛节泰,2008.华北地区气溶胶对区域降水的影响[J].科学通报,53(23):2947-2955.Duan J,Mao J T,2008.Impacts of aerosol on regional precipitation in North China[J].Chin Sci Bull,53(23):2947-2955.(in Chinese).
参考文献 9
Eun S H,Kim B G,Lee K M,et al.,2016.Characteristics of recent severe haze events in Korea and possible inadvertent weather modification[J].SOLA,12:32-36.
参考文献 10
Gao Y,Wu T W,Chen B D,et al.,2013.A numerical simulation of microphysical structure of cloud associated with the 2008 winter freezing rain over Southern China[J].J Meteor Soc Japan,91(2):101-117.
参考文献 11
Gong D Y,Ho C H,Chen D L,et al.,2007.Weekly cycle of aerosol-meteorology interaction over China[J].J Geophys Res,112(D22):D22202.
参考文献 12
Haywood J M,Boucher O,2000.Estimates of the direct and indirect radiative forcing due to tropospheric aerosols:a review[J].Rev Geophys,38(4):513-543.
参考文献 13
Hobbs P V,Radke L F,Shumway S,1970.Cloud condensation nuclei from industrial sources and their apparent influence on precipitation in Washington state[J].J Atmos Sci,27(1):81-89.
参考文献 14
Jin M L,2005.Urban aerosols and their variations with clouds and rainfall:a case study for New York and Houston[J].J Geophys Res,110(D10):D10S20.
参考文献 15
Kalina E A,Friedrich K,Morrison H,et al.,2014.Aerosol effects on idealized supercell thunderstorms in different environments[J].J Atmos Sci,71(12):4558-4580.
参考文献 16
Levin Z,Cotton W R,2009.Aerosol pollution impact on precipitation[M].Dordrecht:Springer Netherlands.
参考文献 17
刘洋,李诚志,刘志辉,等,2016.基WRF模式的新疆巴音布鲁克盆地强降雨天气数值模拟效果分析[J].干旱区研究,33(1):28-37.Liu Y,Li C Z,Liu Z H,et al.2016.Analysis on the numerical simulation of heavy rainfall based on WRF model in Bayanbuluk Basin[J].Arid Zone Research,33(1):28-37.(in Chinese).
参考文献 18
马严枝,陆昌根,高守亭,2012.8.19华北暴雨模拟中微物理方案的对比试验[J].大气科学,36(4):835-850.Ma Y Z,Lu C G,Gao S T,2012.The effects of different microphysical schemes in WRF on a heavy rainfall in North China during 18—19 August 2010[J].Chin J Atmos Sci,36(4):835-850.(in Chinese).
参考文献 19
Menon S,Hansen J,Nazarenko L,et al.,2002.Climate effects of black carbon aerosols in China and India[J].Science,297(5590):2250-2253.
参考文献 20
Misra A K,Tripathi A,Naresh R,et al.,2016.Modelling and analysis of the effects of aerosols in making artificial rain[J].Model Earth Syst Environ,2(4):1-11.
参考文献 21
Morrison H,2012.On the robustness of aerosol effects on an idealized supercell storm simulated with a cloud system-resolving model[J].Atmos Chem Phys Discuss,12(4):10493-10533.
参考文献 22
Nugent A D,Watson C D,Thompson G,et al.,2016.Aerosol impacts on thermally driven orographic convection[J].J Atmos Sci,73(8):3115-3132.
参考文献 23
Reisin T,Levin Z,Tzivion S,1996.Rain production in convective clouds as simulated in an axisymmetric model with detailed microphysics.part I:description of the model[J].J Atmos Sci,53(3):497-519.
参考文献 24
Saleeby S M,Cotton W R,2005.A large-droplet mode and prognostic number concentration of cloud droplets in the Colorado state university regional atmospheric modeling system(RAMS).part II:sensitivity to a Colorado winter snowfall event[J].J Appl Meteor,44(12):1912-1929.
参考文献 25
石荣光,刘奇俊,马占山,2015.利用GRAPES模式研究气溶胶对云和降水过程的影响[J].气象,41(3):272-285.Shi R G,Liu Q J,Ma Z S,2015.Numerical simulation of aerosol effects on cloud and precipitation using GRAPES model[J].Meteor Mon,41(3):272-285.(in Chinese).
参考文献 26
石睿,王体健,李树,等,2015.东亚夏季气溶胶-云-降水分布特征及其相互影响的资料分析[J].大气科学,39(1):12-22.Shi R,Wang T J,Li S,et al.,2015.The spatial and temporal characteristics of aerosol-cloud-precipitation interactions during summer in East Asia[J].Chin J Atmos Sci,39(1):12-22.(in Chinese).
参考文献 27
师宇,楼小凤,王广河,2016.气溶胶对北京地区云和降水影响的模拟研究[J].地理研究,35(10):1912-1924.Shi Y,Lou X F,Wang G H,2016.Numerical simulation of the effect of aerosol on cloud and precipitation in Beijing[J].Geogr Res,35(10):1912-1924.(in Chinese).
参考文献 28
Takeda T,Kuba N,1982.Numerical study of the effect of CCN on the size distribution of cloud droplets.Part Ⅰ.cloud droplets in the stage of condensation growth[J].J Meteor Soc Japan,61:375-387.
参考文献 29
Thompson G,Rasmussen R M,Manning K W,2004.Explicit forecasts of winter precipitation using an improved bulk microphysics scheme.part I:description and sensitivity analysis[J].Mon Wea Rev,132(2):519-542.
参考文献 30
Thompson G,Field P R,Rasmussen R M,et al.,2008.Explicit forecasts of winter precipitation using an improved bulk microphysics scheme.part II:implementation of a new snow parameterization[J].Mon Wea Rev,136(12):5095-5115.
参考文献 31
Twomey S,1977.The influence of pollution on the shortwave albedo of clouds[J].J Atmos Sci,34(7):1149-1152.
参考文献 32
van den Heever S C,Cotton W R,2007.Urban aerosol impacts on downwind convective storms[J].J Appl Meteor Climatol,46(6):828-850.
参考文献 33
王桂新,2013.城市化基本理论与中国城市化的问题及对策[J].人口研究,37(6):43-51.Wang G X,2013.The basic theory of urbanization and problems and countermeasures of China's urbanization[J].Popul Res,37(6):43-51.(in Chinese).
参考文献 34
王惠,刘晓莉,安俊琳,等,2016.南京不同天气和能见度下云凝结核的观测分析[J].气象科学,36(6):800-809.Wang H,Liu X L,An J L,et al.,2016.Observational study of cloud condensation nuclei under different weather and visibility in Nanjing[J].J Meteor Sci,36(6):800-809.(in Chinese).
参考文献 35
王啸华,吴海英,唐红昇,等,2012.2009年7月7日南京短时暴雨的中尺度特征分析[J].气象,38(9):1060-1069.Wang X H,Wu H Y,Tang H S,et al.,2012.Mesoscale characteristic analysis on a shorttime torrential rain in Nanjing on 7 July 2009[J].Meteor Mon,38(9):1060-1069.(in Chinese).
参考文献 36
Warner J,Twomey S,1967.The production of cloud nuclei by cane fires and the effect on cloud droplet concentration[J].J Atmos Sci,24(6):704-706.
参考文献 37
许世远,王军,石纯,等,2006.沿海城市自然灾害风险研究[J].地理学报,61(2):127-138.Xu S Y,Wang J,Shi C,et al.,2006.Research of the natural disaster risk on coastal cities[J].Acta Geogr Sin,61(2):127-138.(in Chinese).
参考文献 38
徐小红,余兴,戴进,2009.气溶胶对秦岭山脉地形云降水的影响[J].气象,35(1):37-47.Xu X H,Yu X,Dai J,2009.Effect of aerosol on orographic precipitation in Qinling mountains[J].Meteor Mon,35(1):37-47.(in Chinese).
参考文献 39
杨慧玲,肖辉,洪延超,2011.气溶胶对云宏微观特性和降水影响的研究进展[J].气候与环境研究,16(4):525-542.Yang H L,Xiao H,Hong Y C,2011.Progress in impacts of aerosol on cloud properties and precipitation[J].Clim Environ Res,16(4):525-542.(in Chinese).
参考文献 40
杨桃进,刘宇迪,眭敏,2017.不同浓度污染气溶胶对一次暴雨的影响[J].大气科学,41(4):882-896.Yang T J,Liu Y D,Sui M,2017.Impacts of different concentrations of anthropogenic pollutants on a rainstorm[J].Chin J Atmos Sci,41(4):882-896.(in Chinese).
参考文献 41
杨正卿,银燕,刘聪,等,2012.云滴数浓度影响混合型层状云降水的数值模拟[J].大气科学学报,35(3):350-363.Yang Z Q,Yin Y,Liu C,et al.,2012.Numerical simulation of impact of cloud droplet number concentration on precipitation from mixed stratiform and convective clouds[J].Trans Atmos Sci,35(3):350-363.(in Chinese).
参考文献 42
尹占娥,许世远,殷杰,等,2010.基于小尺度的城市暴雨内涝灾害情景模拟与风险评估[J].地理学报,65(5):553-562.Yin Z E,Xu S Y,Yin J,et al.,2010.Small-scale based scenario modeling and disaster risk assessment of urban rainstorm water-logging[J].Acta Geogr Sin,65(5):553-562.(in Chinese).
参考文献 43
岳治国,刘晓东,梁谷,2011.气溶胶对北京地区不同类型云降水影响的数值模拟[J].高原气象,30(5):1356-1367.Yue Z G,Liu X D,Liang G,2011.Numerical simulation of influence of aerosols on different cloud precipitation types in Beijing area[J].Plateau Meteor,30(5):1356-1367.(in Chinese).
参考文献 44
张晶,郑有飞,李云川,等,2011.石家庄市周边秸杆焚烧导致云凝结核变化的特征[J].大气科学学报,34(3):343-350.Zhang J,Zheng Y F,Li Y C,et al.,2011.Characteristics of CCN concentration change caused by straw burning around Shijiazhuang City[J].Trans Atmos Sci,34(3):343-350.(in Chinese).
目录contents

    摘要

    利用WRF3.8.1模式,采用Thompson云微物理参数化方案,对南京2014年6月初的一次暴雨过程进行模拟;设置多组数值试验,从中选取清洁和严重污染两组试验,对比分析低、高云凝结核浓度对此次降水的影响。结果表明:1)Thompson方案对此次降水过程具有一定的再现能力,但对24 h累积降水量的模拟整体偏低,且随云凝结核浓度的上升,累积降水量增加。较高的云凝结核浓度有利于强降水中心强度增强、降水范围扩大,而对较弱降水中心则有相反的影响。2)云凝结核浓度的增加将抑制云滴向雨滴的转化,使更多云滴被输送到对流层中层,对流层低层的暖云过程被抑制。3)云凝结核浓度的增加使对流层中层的过冷云水增加,促进过冷云水向霰的转化,也促进雪的淞附过程,这有利于冷云过程的发展。4)云凝结核浓度的增加对暖云过程具有负反馈作用,对冷云过程具有正反馈作用。

    Abstract

    WRF3.8.1 model was chosen to simulate a rainstorm process in Nanjing in early June 2014 with Thompson cloud microphysics parameterization scheme.The effects of cloud condensation nuclei (CCN) concentration on the rainstorm were compared by two numerical experiments,which represent the high and low CCN concentrations,respectively.Results show that:(1) Thompson scheme can reproduce the rainstorm process to a certain extent,but the simulation of 24 h cumulative precipitation is generally low,and the cumulative precipitation increases with the increase of CCN concentration.The higher CCN concentration is beneficial to the enhancement of heavy precipitation centers and the expansion of heavy precipitation range,while it has the opposite effect on the weak precipitation centers.(2) The increase of CCN concentration will inhibit the transformation of cloud droplets to raindrops,more cloud droplets will be transported to the middle troposphere,and the warm cloud process in the lower troposphere will be inhibited.(3) The increase of CCN concentration increases the supercooled cloudwater in the middle troposphere,promotes the transformation of supercooled cloudwater to graupel,and promotes the riming process of droplets onto snow,which is conducive to the development of cold cloud process.(4) The increase of CCN concentration has negative feedback effect on warm cloud process and positive feedback effect on cold cloud process.

  • 气溶胶一方面通过吸收和散射太阳辐射而直接影响地气系统的辐射平衡(气溶胶-辐射效应)(王啸华等,2012);另一方面又可以作为云凝结核(Cloud Condensation Nuclei,CCN)影响云的光学特性、云量以及云的寿命(气溶胶-云效应)(Warner and Twomey,1967)以及降水过程(Haywood and Boucher,2000;Menon et al.,2002;杨正卿等,2012)。近十几年,中国城市化的快速发展导致大气气溶胶浓度迅速增加(许世远等,2006;张晶等,2011;王桂新,2013),对城市降水存在一定影响(Jin,2005;尹占娥等,2010;岳治国等,2011)。对气溶胶和暴雨之间的相互关系的研究,不仅可以完善我们对城市夏季暴雨灾害机制的认识(Twomey,1977),对提高城市精细化天气预报的精度有着重要的指导意义,而且还对城市基础设施建设以及城市防灾减灾体系的建立有着一定的现实意义。

  • 在观测研究中,CCN对降水的影响存在争议(Bell et al.,2008;Levin and Cotton,2009)。20世纪70年代,Hobbs et al.(1970)提出城市下风方向暖云的降水增加与城市排放的CCN的增加有关。但是,陈思宇等(2012)认为空气污染造成的气溶胶浓度的增加是导致中国中东部地区秋季降水减少的一个重要原因,Gong et al.(2007)及段婧和毛节泰(2008)也认为气溶胶对区域降水有显著的抑制效应。这些观测数据大多是来自于较低的暖云或者层状云,但是在对流发展旺盛的强降水天气中云水密度、云滴尺度等观测数据较少。而数值模式可以较精细的描述CCN浓度变化对对流风暴产生的动力学、微物理学和表面降水的影响(van den Heever and Cotton,2007;陈倩等,2013;陈卫东等,2015a),因此成为探究降水过程对气溶胶敏感性的重要手段。研究指出,CCN浓度的增加使水成物有效半径减小,暖云云滴的碰并过程和冰晶的淞附过程受到抑制,地面降水减少(Saleeby and Cotton,2005;Reisin et al.,2010);但是Misra et al.(2016)设计了一个包含水汽密度、云滴浓度、云滴尺寸、雨滴密度和CCN浓度五种变量的非线性数学模式,对一次假设的降水进行模拟却得到相反的结论。也有研究证明CCN浓度的变化对云降水(徐小红等,2009)物理过程的影响是非单调的(Morrison,2012;Kalina et al.,2014),并且高度依赖于环境条件(石荣光等,2015),同时也受到降水形式的限制(Nugent et al.,2016)。

  • Terra卫星的遥感数据显示中国夏季气溶胶主要集中在长三角地区、京津冀地区和珠三角地区(石睿等,2015),不同地区的气溶胶、云和降水之间的相互作用有较大差异(Eun et al.,2016;师宇等,2016)。目前有较多的研究分别用不同的微物理参数化方案探讨了华北(陈卫东等,2015b;杨桃进等,2017)、华南(杨慧玲等,2011;Gao et al.,2013)地区的气溶胶与降水的关系,微物理参数化方案较多选取Lin、Morrison和WDM等,而在华东地区这样的研究较少。

  • 综上可见,CCN对强降水过程的影响还存在很大的不确定性。南京地处长三角地区,是我国污染较严重的城市之一,能够很好代表长三角地区并开展CCN对强降水过程的影响研究(王惠等,2016)。此外,Thompson微物理方案在华东地区的应用较少(董昊等,2012;马严枝等,2012)。因此,本文利用中尺度数值模式WRFV3.8.1,选取改进后的Thompson云微物理方案,模拟2014年5月31日至6月1日(北京时,下同)发生在南京的一次暴雨过程。通过进行不同CCN浓度的数值试验,研究CCN浓度变化对暴雨过程的影响。

  • 1 个例介绍

  • 2014年至5月底,黄淮、江淮、江南等地发生了一次强降水过程,江苏中、南部和浙江西北部等地有大到暴雨。从5月31日18时高低空环流形势(图1)可以看到,南京位于500 hPa低涡底部的偏西气流中(图1a),有较好的抬升条件。850 hPa安徽西北部维持一个低涡系统,其东部有较强的气旋式切变,同时低涡的西南部和东部存在较强的低空急流,提供良好的水汽条件(图1b)。地面江淮地区有明显的气旋维持(图1c),观察温度场的垂直结构可以看到明显的冷暖锋结构(图略)。从系统高低空配置可以看出,维持在江淮地区的是一个较为深厚的低值系统,将在安徽-江苏-浙江一带形成一次持续时间较长、强度较大的锋面降水。而在5月25—30日,南京空气污染严重,5月30日的空气质量指数(AQI)高达265 μg·m-3。这次天气过程为研究气溶胶对城市暴雨的影响提供了很好的环境条件。

  • 2 模式和敏感性试验设置

  • WRF模式是一种完全可压非静力模式,采用Arakawa C网格,集数值天气预报、大气模拟及数据同化于一体,能够更好地改善对中尺度天气的模拟和预报。本文利用美国新一代高分辨率的中尺度数值模式WRF(V3.8.1)进行数值试验,其中云微物理参数化方案使用了改进的Thompson方案(Thompson et al.,2004)。Thompson微物理方案的提出是为了提高冻雨事件的预报水平,是对早期Reisner方案的改进,以一种简单、节约计算成本的方法考虑了气溶胶效应(Thompson et al.,2004)。

  • 图.1 北京时2014年5月31日18时亚洲中东部地区500 hPa(a)、850 hPa(b)和地面(c)的环流形势(图a和图b实线为位势高度,单位:dagpm;图c实线为气压,单位:hPa;箭矢为风速,单位:m·s-1;蓝色实心点代表南京)

  • Fig.1 Circulation patterns of(a)500 hPa,(b)850 hPa and(c)suface central-eastern Asia at 18:00 BST 31 May 2014(Solid lines are geopotential heights with the unit of dagpm in figure a and b,solid lines are pressure with the unit of hPa in figure c,arrows are wind speeds with the unit of m·s-1,and blue solid dots represent Nanjing)

  • 主要的改进如下整个美国地区持续3 d的冬季风暴时间进行了高分辨率的模拟,能很好地模拟气溶胶对云属性、辐射、降水数量和类型的影响(Thompson et al.,2008),在中国的华南地区一次冬季冻雨的模拟中,Thompson方案的模拟降水与实测降水也有较高的相关系数(刘洋等,2016)。这里不使用化学模块的原因是:1)加入多种气溶胶类型后可能会导致较长的积分时间,提升了模拟的复杂性(Thompson et al.,2008),为了节约计算成本,本文不使用WRF-chem。2)污染物种类几乎不影响云滴谱(Takeda and Kuba,1982)。3)在Thompson方案中只考虑气溶胶的可溶性:亲水性气溶胶和亲冰性气溶胶。

  • 本试验模拟时长设置为42 h(2014年5月31日06时—6月2日00时),前6 h为spin-up-time以改善模拟结果。模式网格设置为三层嵌套网格(图2a),从外层向内层分辨率依次为27 km、9 km、3 km,格点数分别为202×151、142×136、100×106。最外层网格包含了本次天气过程高低空的主要天气系统,最内层网格的土地利用分布(图2b)与实际土地利用较好吻合。观测资料使用中国自动站与CMORPH降水产品融合的逐时降水量网格数据集。初始场和边界场资料使用来自美国国家环境预报中心(NCEP)逐6 h水平分辨率为1°×1°的全球再分析资料(FNL),以及来源于Colarco et al.(2010)的2001—2007年全球模式模拟的分辨率为0.5°×1.25°的气溶胶气候场资料(包含硫酸盐、海盐、灰尘和黑碳的质量混合比)。

  • 表1为参数化方案及敏感性试验设置。模式默认输入CCN数浓度为31429 cm-3,远高于王惠等(2016)在2013年同期观测的CCN数浓度最大值:20000 cm-3。因此,以最底层CCN数浓度接近观测最大值的输入场代表严重空气污染的初始条件(CCN数浓度为20428 cm-3),并命名以该初始条件模拟的试验为polluted。另外分别将最底层CCN数浓度为14143 cm-3和1885cm-3的输入场作为正常情况下和清洁大气条件下的初始场,分别命名为normal和clean。

  • 图.2 模式网格设置(a)和最内层土地利用分布(b)

  • Fig.2(a)Multiple-nested model configuration of the experiment and(b)land use distribution in innermost domain

  • 表.1 参数化方案和敏感性试验设置

  • Table.1 Parameterization schemes and setting of sensitivity experiments

  • 3 结果分析

  • 3.1 CCN浓度对降水的影响

  • 从24 h累积降水空间分布(图3)可以看到,观测场(图3a)的三个降水中心在模式结果(图3b、c)中都有较好体现。polluted试验(图3b)中北部的狭长降水带比观测偏北约0.5°,西北的降水中心偏南0.4°,且模式高估了32.7°N以南的弱降水,这些偏差可能是由初始条件的误差导致。对比观测数据与模式初始场的相对湿度(图略)可以看到,初始场较好再现了低层(900 hPa)的环境湿度场,但是对于700 hPa左右的湿度场与观测相差较大。因此,下文将选择最内层网格32.7°N以北的R区域作为分析对象。通过观测数据计算得到6月1日12时前24 h的R区域平均累积降水量为55.26 mm,而polluted试验平均24 h累积降水量为49.13 mm。由于模拟得到的西部降水中心范围较小,使得模式对累积降水有所低估。当模式底层CCN数浓度下降至14143 cm-3(normal)和1885 cm-3(clean)时,24 h累积降水量分别为46.86 mm和45.73 mm,相比polluted试验分别下降了4.6%和7.4%。说明随着CCN数浓度上升,累积降水增加。接下来以clean和polluted试验为代表试验,来分析清洁和严重污染的环境条件对降水的影响。

  • 从clean试验的24 h累积降水水平分布(图3c)可以看到,北部、西部的降水中心最大值大约分别为106.3 mm和101.6 mm,东南部的降水较弱,中心最大值约为85.5 mm。而polluted试验(图3b)北部、西部和东南部的降水中心最大值大约分别为116.6 mm,122.3 mm和82.9 mm。北部和西部两个较强的降水中心降水量随着CCN浓度上升而上升,降水范围也有所增大;而东南部较弱的降水中心降水量随着CCN浓度上升而下降,降水范围减弱。另外,CCN数浓度的上升对雨带位置没有明显的影响。

  • 为了更好地与观测进行对比,图4a给出R区域1 h降水随时间的变化。观测和polluted试验降水均开始于5月31日13时,结束于6月1日12时。观测降水最大值出现在31日22时,最大值为6.56 mm,而polluted试验最大值出现在1日01时,最大值为6.08mm。总体来说,试验模式较好模拟了降水的起止时间,且模拟结果与观测的降水总体趋势基本一致,但峰值出现的时间推后了3 h,降水峰值强度也略微减弱。将polluted和clean试验的逐时降水相减(图4b)后发现,在31日19时之前polluted试验的逐时降水小于clean试验,20时之后则完全相反。下面选择5月31日19时,6月1日02时和08时分别代表降水的前、中、后期进行降水机制分析。

  • 3.2 CCN浓度对云微物理过程的影响

  • 图5为5月31日19时R区域水成物的区域平均垂直廓线。从云滴的数浓度垂直廓线(图5a)可以看到两组试验中云水均维持在950~400 hPa之间,且polluted试验中的云滴数浓度明显大于clean试验,而两组试验云水混合比(图5d)的差异不明显。这说明在云水质量相当的情况下,较高的CCN

  • 图.3 5月31日12时—6月1日12时最内层网格累积降水量的水平分布(单位:mm):(a)观测结果;(b)polluted试验;(c)clean试验

  • Fig.3 Horizontal distributions of accumulated precipitation in the innermost domain from 12:00 BST 31 May to 12:00 BST 1 June 2014(units:mm):(a)the observations;(b)the polluted experiment;(c)the clean experiment

  • 图.4 R区域平均逐时降水量(a)和两组试验逐时降水量差值(b)的时间序列(单位:mm)

  • Fig.4 Time series of(a) hourly precipitation averaged in the region R and(b) difference in the hourly precipitation between the two experiments(units:mm)

  • 图.5 5月31日19时R区域平均水成物数浓度(a.云水(Nc;单位:102 cm-3);b.冰晶(Ni;单位:10-1cm-3);c.雨水(Nr;单位:10-2cm-3))和混合比(d.云水(Qc;单位:10-4kg·kg-1);e.冰晶(Qi;单位:10-6 kg·kg-1);f.雨水(Qr;单位:10-4 kg·kg-1);g.雪(Qs;单位:10-3kg·kg-1);h.霰(Qg;单位:10-5kg·kg-1))的垂直廓线(红线代表clean试验,黑线代表polluted试验)

  • Fig.5 Vertical profiles of number concentration(a.cloudwater(Nc;units:102cm-3);b.ice(Ni;units:10-1cm-3);c.rain(Nr;units:10-2 cm-3)) and mixture ratio(d.cloudwater(Qc;units:10-4 kg·kg-1);e.ice(Qi;units:10-6 kg·kg-1);f.rain(Qr;units:10-4kg·kg-1);g.snow(Qs;units:10-3kg·kg-1);h.graupel(Qg;units:10-5 kg·kg-1)) of hydrate particles averaged in the region R at 19:00 BST 31 May(Red line represents the clean experiment,and black line represents the polluted experiment)

  • 浓度会产生较多的云滴,使云滴数浓度明显增加。polluted试验雨滴数浓度(图5c)和混合比(图5f)均小于clean试验,在相同云水质量情况下,更多的云滴粒子却不能产生更多的雨水,这说明CCN浓度升高使云滴有效半径减小,云滴碰并效率下降,雨水减少。

  • R区域的温度廓线(图略)显示零度层位于550 hPa附近。对于冰相粒子,较高的CCN浓度在零度层产生较多的过冷水滴,冻结产生较多的冰晶,这使得polluted试验冰晶数浓度(图5b)和混合比(图5e)在550~400 hPa高于clean试验,但在400 hPa以上高CCN浓度却抑制了冰晶的生成。所以相对整层的来说,两组试验冰晶浓度差异不大,这也让两组试验的淞附过程和过冷云水碰冻过程所产生的雪(图5g)和霰(图5h)差异较小。另外,降水前期冰相粒子无论混合比还是数浓度的量级均较小,主要以暖云降水为主。

  • 图6为6月1日02时R区域平均水成物的垂直廓线。该时刻云滴数浓度垂直分布(图6a)和31日19时相似,但是在800 hPa以上polluted试验的云水混合比(图6d)比clean试验大得多。增加了CCN浓度,虽然云滴碰并效率的下降会导致雨滴数浓度的下降(图6c),但是雨滴下落过程中碰并大量小云滴,使雨水混合比(图6f)上升。因此和前一阶段不同的是,两个试验在降水中期雨水的混合比相差较小。02时的冰相粒子显示出相似的垂直分布,无论是polluted试验冰晶的数浓度(图6b)和混合比(图6e)还是雪(图6g)和霰(图6h)的混合比都高于clean试验。低层碰并效率下降使更多云水输送到对流层中层,在550 hPa附近形成大量的过冷云水。而在降水中期,对流运动十分旺盛。强烈的垂直上升运动将云水抬升至较高的高度(450 hPa),冻结产生大量冰晶,同时也促进了雪在下落过程中的淞附增长以及霰和过冷云水的碰冻增长,冷云过程被加强。

  • 降水过程发展至后期,两组试验在6月1日09时的冰晶(图7b、e)大部分存在于300 hPa以上,雪(图7g)的混合比量级较小,两者形成的降水在降水中所占比重较小,降水主要来源于暖云过程,还有一小部分来源于霰。polluted试验整层云滴数浓度(图7a)均高于clean试验,800~400 hPa polluted试验云水数混合比(图7a)也高于clean试验。但是在650 hPa附近clean试验的云滴数浓度接近0,过小的云滴数浓度抑制了云水向雨水的转化,反而polluted试验有足量云水转化为雨水。因此在对流层中层,polluted试验的雨水混合比(图7f)大于clean试验。而在对流层低层,较高的CCN浓度仍然抑制了暖云降水。另外,polluted试验的云滴数浓度和混合比在550 hPa附近比clean试验高近一个量级,说明较高CCN浓度的环境有利于云水维持在0℃层附近形成过冷云水。过冷云水的碰并作用使霰的混合比(图7h)上升,从而加强了冷云过程。也促进了霰融化成雨滴,使对流层中层雨水的数浓度

  • 图.6 6月1日02时R区域平均水成物数浓度(a.云水(Nc;单位:102 cm-3);b.冰晶(Ni;单位:10-1 cm-3);c.雨水(Nr;单位:10-2 cm-3))和混合比(d.云水(Qc;单位:10-4 kg·kg-1);e.冰晶(Qi;单位:10-6 kg·kg-1);f.雨水(Qr;单位:10-4 kg·kg-1);g.雪(Qs;单位:10-3 kg·kg-1);h.霰(Qg;单位:10-5 kg·kg-1))的垂直廓线(红线代表clean试验,黑线代表polluted试验)

  • Fig.6 Vertical profiles of number concentration(a.cloudwater(Nc;units:102cm-3);b.ice(Ni;units:10-1cm-3);c.rain(Nr;units:10-2 cm-3)) and mixture ratio(d.cloudwater(Qc;units:10-4 kg·kg-1);e.ice(Qi;units:10-6 kg·kg-1);f.rain(Qr;units:10-4 kg·kg-1);g.snow(Qs;units:10-3 kg·kg-1);h.graupel(Qg;units:10-5 kg·kg-1)) of hydrate particles averaged in the region R at 02:00 BST 1 June(Red line represents the clean experiment,and black line represents the polluted experiment)

  • 图.7 6月1日09时R区域平均水成物数浓度(a.云水(Nc;单位:102 cm-3);b.冰晶(Ni;单位:10-1 cm-3);c.雨水(Nr;单位:10-2 cm-3))和混合比(d.云水(Qc;单位:10-4 kg·kg-1);e.冰晶(Qi;单位:10-6 kg·kg-1);f.雨水(Qr;单位:10-4 kg·kg-1);g.雪(Qs;单位:10-3 kg·kg-1);h.霰(Qg;单位:10-5 kg·kg-1))的垂直廓线(红线代表clean试验,黑线代表polluted试验)

  • Fig.7 Vertical profiles of number concentration(a.cloudwater(Nc;units:102cm-3);b.ice(Ni;units:10-1cm-3);c.rain(Nr;units:10-2 cm-3)) and mixture ratio(d.cloudwater(Qc;units:10-4 kg·kg-1);e.ice(Qi;units:10-6 kg·kg-1);f.rain(Qr;units:10-4 kg·kg-1);g.snow(Qs;units:10-3 kg·kg-1);h.graupel(Qg;units:10-5 kg·kg-1)) of hydrate particles averaged in the region R at 09:00 BST 1 June(Red line represents the clean experiment,and black line represents the polluted experiment)

  • (图7c)和混合比(图7f)增加。

  • 3.3 CCN浓度对环境场影响

  • 为了进一步探究CCN浓度对本次降水环境场的影响,图8给出了polluted试验与clean试验最大垂直速度(dw)和微物理过程潜热释放(dh)差值随时间的变化。可以看到31日19时之前polluted试验的垂直速度和潜热释放均小于clean试验,在3.2节的分析中得知这两个时间段内暖云降水占较大的

  • 图.8 两组试验R区域最大垂直速度差值(黑线;单位:m·s-1)和微物理过程潜热释放差值(红线;单位:10-2 K)的时间序列

  • Fig.8 Time series of differences in maximum vertical velocity(black line;units:m·s-1) and latent heat release from microphysical process(red line;units:10-2 K) averaged in the region R between the two experiments

  • 比重,由于CCN浓度的上升使云滴数浓度上升,云滴有效半径减小,这将会促进云滴的蒸发,抑制水汽的凝结,使潜热释放减弱,从而减弱空气的受热抬升,进一步抑制暖云作用。这是云凝结核对暖云过程的负反馈。

  • 在31日20时至1日07时,polluted试验的垂直速度和潜热释放均大于clean试验。此时对流云发展比较旺盛,冷云降水的比重增加。较高的CCN和过冷云水在对流层中层的维持会促进雪在下落过程中的淞附增长和霰、冰晶的冻结增长。冰相过程的凝华和冻结潜热释放增加,促进空气的抬升运动,进一步加强冷云过程。这是云凝结核对冷云过程的正反馈。到08时以后,虽然polluted试验垂直速度比clean试验小,但是冻结潜热释放大于clean试验。这说明polluted试验中霰的混合比下降较慢,零度层附近一直有冻结潜热释放,较高浓度的霰的稳定维持是高CCN浓度下后期降水增加的重要原因。

  • 从宏观来看,31日19时之前两个试验的最大垂直水汽通量(图9)相差较小,但两者水成物含量有较大差异(图5),说明修改云凝结核浓度后,云微物理过程是引起降水前期降水量变化(图4b)的重要因素。在降水中期,两个试验均有较大的垂直水汽通量,特别是在31日23时—1日07时,polluted试验最大水汽通量远高于clean试验。此时环境场有较好的抬升和水汽条件,配合CCN浓度升高对冷云降水正反馈作用,使polluted试验在该时段的降水量高于clean试验。由此可以看出环境场是影响降水量的主要因素,但是CCN浓度的升高可以通过影响云物理过程来改变云雨转化效率,特别是会增加垂直运动较强时的冷云过程,从而促进了降水。

  • 4 结论与讨论

  • 利用中尺度数值模式WRFV3.8.1,选取改进后的Thompson云微物理方案,对南京地区2014年6月1日的一次系统性降水过程进行了模拟。设计的试验包括不同云凝结核浓度的多次模拟,并从中选取符合实际大气状态的两组试验(清洁和严重污染),对比分析云凝结核浓度变化对累积降水的影响。通过比较水成物、垂直速度和潜热释放等物理量,进一步分析了云凝结核浓度对降水的影响,主要结论如下:

  • 1)Thompson方案对此次降水过程有一定的再现能力。当CCN浓度小于实际观测峰值时,随着CCN浓度的上升,24 h区域累积降水量增加,较强的降水中心降水强度增强,降水范围增大;较弱的降水中心降水强度减弱,降水范围减小,此外CCN浓度变化不会影响降水中心的位置。

  • 2)较高的CCN浓度会产生较多云滴,但是云滴有效半径减小,不利于云滴碰并生成雨滴,这在降水前期尤为明显。而随着对流云的发展,较小的云滴更容易被输送至对流层中层,低层云滴数浓度和混合比均下降,这进一步抑制了使低层的暖云过程。

  • 3)当对流云发展到中期,冷云降水所占比重增

  • 图.9 clean试验(红线)和polluted试验(黑线)R区域最大垂直水汽通量的时间序列(单位:10-3 kg·s-1·m-2)

  • Fig.9 Time series of maximum vertical moisture fluxes averaged in the region R in the clean(red line) and polluted(black line) experiments(units:10-3 kg·s-1·m-2)

  • 加。CCN浓度的增加使云滴维持在对流层中层0℃线附近,过冷云水的混合比和数浓度均增加。这将促进过冷云水向霰的转化,也促进雪的淞附过程,这有利于冷云过程的发展。较高CCN浓度使得在降水后期的霰维持较高浓度,增加了霰融化形成的降水。

  • 4)虽然降水的主要影响因素是环境场的抬升和水汽条件,但CCN浓度的增加会抑制水汽凝结成云滴,促进液态水向固态水的相变,这会对暖云过程产生负反馈作用。此外,CCN浓度的增加对高空冰相粒子生成的促进作用所释放的潜热加热,会对冷云过程产生正反馈作用。

  • 以上结论是通过对一次江淮气旋所引起的系统性降水的模拟得到的,不一定适合不同环境条件下的降水过程。接下来的研究中,将选择一次局地强降水过程作为分析对象,进一步探索云凝结核浓度对不同类型降水的影响,比较云凝结核浓度影响不同类型暴雨的过程的差异。此外,本研究没有考虑气溶胶-辐射效应,下一步工作将使用加入化学模块及排放源资料的WRF-chem模式,更全面的考虑气溶胶-云-降水的相互作用。

  • 参考文献

    • [1] Bell T L,Rosenfeld D,Kim K M,et al.,2008.Midweek increase in US summer rain and storm heights suggests air pollution invigorates rainstorms[J].J Geophys Res,113(D2):D02209.

    • [2] 陈倩,银燕,金莲姬,等,2013.气溶胶影响混合相对流云降水的数值模拟研究[J].大气科学学报,36(5):513-526.Chen Q,Yin Y,Jin L J,et al.,2013.A numerical simulation study on the effect of aerosol layers on mixed phase convective cloud and precipitation[J].Trans Atmos Sci,36(5):513-526.(in Chinese).

    • [3] 陈思宇,黄建平,付强,等,2012.气溶胶对我国中东部地区秋季降水的影响[J].热带气象学报,28(3):339-347.Chen S Y,Huang J P,Fu Q,et al.,2012.Effects of aerosols on autumn precipitation over mid-eastern China[J].J Trop Meteor,28(3):339-347.(in Chinese).

    • [4] 陈卫东,付丹红,苗世光,等,2015a.北京地区城市环境对云和降水影响的个例数值模拟研究[J].地球物理学进展,30(3):983-995.Chen W D,Fu D H,Miao S G,et al.,2015a.Numerical simulation of urban environment impacts on clouds and precipitation in Beijing[J].Prog Geophys,30(3):983-995.(in Chinese).

    • [5] 陈卫东,付丹红,苗世光,等,2015b.北京及周边城市气溶胶污染对城市降水的影响[J].科学通报,60(22):2124-2135.Chen W D,Fu D H,Miao S G,et al.,2015b.Impacts of aerosols from Beijing and the surrounding areas on urban precipitation[J].Chin Sci Bull,60(22):2124-2135.(in Chinese).

    • [6] Colarco P,da Silva A,Chin M,et al.,2010.Online simulations of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depth[J].J Geophys Res,115(D14):D14207.

    • [7] 董昊,徐海明,罗亚丽,2012.云凝结核浓度对WRF模式模拟飑线降水的影响:不同云微物理参数化方案的对比研究[J].大气科学,36(1):145-169.Dong H,Xu H M,Luo Y L,2012.Effects of cloud condensation nuclei concentration on precipitation in convection permitting simulations of a squall line using WRF model:sensitivity to cloud microphysical schemes[J].Chin J Atmos Sci,36(1):145-169.(in Chinese).

    • [8] 段婧,毛节泰,2008.华北地区气溶胶对区域降水的影响[J].科学通报,53(23):2947-2955.Duan J,Mao J T,2008.Impacts of aerosol on regional precipitation in North China[J].Chin Sci Bull,53(23):2947-2955.(in Chinese).

    • [9] Eun S H,Kim B G,Lee K M,et al.,2016.Characteristics of recent severe haze events in Korea and possible inadvertent weather modification[J].SOLA,12:32-36.

    • [10] Gao Y,Wu T W,Chen B D,et al.,2013.A numerical simulation of microphysical structure of cloud associated with the 2008 winter freezing rain over Southern China[J].J Meteor Soc Japan,91(2):101-117.

    • [11] Gong D Y,Ho C H,Chen D L,et al.,2007.Weekly cycle of aerosol-meteorology interaction over China[J].J Geophys Res,112(D22):D22202.

    • [12] Haywood J M,Boucher O,2000.Estimates of the direct and indirect radiative forcing due to tropospheric aerosols:a review[J].Rev Geophys,38(4):513-543.

    • [13] Hobbs P V,Radke L F,Shumway S,1970.Cloud condensation nuclei from industrial sources and their apparent influence on precipitation in Washington state[J].J Atmos Sci,27(1):81-89.

    • [14] Jin M L,2005.Urban aerosols and their variations with clouds and rainfall:a case study for New York and Houston[J].J Geophys Res,110(D10):D10S20.

    • [15] Kalina E A,Friedrich K,Morrison H,et al.,2014.Aerosol effects on idealized supercell thunderstorms in different environments[J].J Atmos Sci,71(12):4558-4580.

    • [16] Levin Z,Cotton W R,2009.Aerosol pollution impact on precipitation[M].Dordrecht:Springer Netherlands.

    • [17] 刘洋,李诚志,刘志辉,等,2016.基WRF模式的新疆巴音布鲁克盆地强降雨天气数值模拟效果分析[J].干旱区研究,33(1):28-37.Liu Y,Li C Z,Liu Z H,et al.2016.Analysis on the numerical simulation of heavy rainfall based on WRF model in Bayanbuluk Basin[J].Arid Zone Research,33(1):28-37.(in Chinese).

    • [18] 马严枝,陆昌根,高守亭,2012.8.19华北暴雨模拟中微物理方案的对比试验[J].大气科学,36(4):835-850.Ma Y Z,Lu C G,Gao S T,2012.The effects of different microphysical schemes in WRF on a heavy rainfall in North China during 18—19 August 2010[J].Chin J Atmos Sci,36(4):835-850.(in Chinese).

    • [19] Menon S,Hansen J,Nazarenko L,et al.,2002.Climate effects of black carbon aerosols in China and India[J].Science,297(5590):2250-2253.

    • [20] Misra A K,Tripathi A,Naresh R,et al.,2016.Modelling and analysis of the effects of aerosols in making artificial rain[J].Model Earth Syst Environ,2(4):1-11.

    • [21] Morrison H,2012.On the robustness of aerosol effects on an idealized supercell storm simulated with a cloud system-resolving model[J].Atmos Chem Phys Discuss,12(4):10493-10533.

    • [22] Nugent A D,Watson C D,Thompson G,et al.,2016.Aerosol impacts on thermally driven orographic convection[J].J Atmos Sci,73(8):3115-3132.

    • [23] Reisin T,Levin Z,Tzivion S,1996.Rain production in convective clouds as simulated in an axisymmetric model with detailed microphysics.part I:description of the model[J].J Atmos Sci,53(3):497-519.

    • [24] Saleeby S M,Cotton W R,2005.A large-droplet mode and prognostic number concentration of cloud droplets in the Colorado state university regional atmospheric modeling system(RAMS).part II:sensitivity to a Colorado winter snowfall event[J].J Appl Meteor,44(12):1912-1929.

    • [25] 石荣光,刘奇俊,马占山,2015.利用GRAPES模式研究气溶胶对云和降水过程的影响[J].气象,41(3):272-285.Shi R G,Liu Q J,Ma Z S,2015.Numerical simulation of aerosol effects on cloud and precipitation using GRAPES model[J].Meteor Mon,41(3):272-285.(in Chinese).

    • [26] 石睿,王体健,李树,等,2015.东亚夏季气溶胶-云-降水分布特征及其相互影响的资料分析[J].大气科学,39(1):12-22.Shi R,Wang T J,Li S,et al.,2015.The spatial and temporal characteristics of aerosol-cloud-precipitation interactions during summer in East Asia[J].Chin J Atmos Sci,39(1):12-22.(in Chinese).

    • [27] 师宇,楼小凤,王广河,2016.气溶胶对北京地区云和降水影响的模拟研究[J].地理研究,35(10):1912-1924.Shi Y,Lou X F,Wang G H,2016.Numerical simulation of the effect of aerosol on cloud and precipitation in Beijing[J].Geogr Res,35(10):1912-1924.(in Chinese).

    • [28] Takeda T,Kuba N,1982.Numerical study of the effect of CCN on the size distribution of cloud droplets.Part Ⅰ.cloud droplets in the stage of condensation growth[J].J Meteor Soc Japan,61:375-387.

    • [29] Thompson G,Rasmussen R M,Manning K W,2004.Explicit forecasts of winter precipitation using an improved bulk microphysics scheme.part I:description and sensitivity analysis[J].Mon Wea Rev,132(2):519-542.

    • [30] Thompson G,Field P R,Rasmussen R M,et al.,2008.Explicit forecasts of winter precipitation using an improved bulk microphysics scheme.part II:implementation of a new snow parameterization[J].Mon Wea Rev,136(12):5095-5115.

    • [31] Twomey S,1977.The influence of pollution on the shortwave albedo of clouds[J].J Atmos Sci,34(7):1149-1152.

    • [32] van den Heever S C,Cotton W R,2007.Urban aerosol impacts on downwind convective storms[J].J Appl Meteor Climatol,46(6):828-850.

    • [33] 王桂新,2013.城市化基本理论与中国城市化的问题及对策[J].人口研究,37(6):43-51.Wang G X,2013.The basic theory of urbanization and problems and countermeasures of China's urbanization[J].Popul Res,37(6):43-51.(in Chinese).

    • [34] 王惠,刘晓莉,安俊琳,等,2016.南京不同天气和能见度下云凝结核的观测分析[J].气象科学,36(6):800-809.Wang H,Liu X L,An J L,et al.,2016.Observational study of cloud condensation nuclei under different weather and visibility in Nanjing[J].J Meteor Sci,36(6):800-809.(in Chinese).

    • [35] 王啸华,吴海英,唐红昇,等,2012.2009年7月7日南京短时暴雨的中尺度特征分析[J].气象,38(9):1060-1069.Wang X H,Wu H Y,Tang H S,et al.,2012.Mesoscale characteristic analysis on a shorttime torrential rain in Nanjing on 7 July 2009[J].Meteor Mon,38(9):1060-1069.(in Chinese).

    • [36] Warner J,Twomey S,1967.The production of cloud nuclei by cane fires and the effect on cloud droplet concentration[J].J Atmos Sci,24(6):704-706.

    • [37] 许世远,王军,石纯,等,2006.沿海城市自然灾害风险研究[J].地理学报,61(2):127-138.Xu S Y,Wang J,Shi C,et al.,2006.Research of the natural disaster risk on coastal cities[J].Acta Geogr Sin,61(2):127-138.(in Chinese).

    • [38] 徐小红,余兴,戴进,2009.气溶胶对秦岭山脉地形云降水的影响[J].气象,35(1):37-47.Xu X H,Yu X,Dai J,2009.Effect of aerosol on orographic precipitation in Qinling mountains[J].Meteor Mon,35(1):37-47.(in Chinese).

    • [39] 杨慧玲,肖辉,洪延超,2011.气溶胶对云宏微观特性和降水影响的研究进展[J].气候与环境研究,16(4):525-542.Yang H L,Xiao H,Hong Y C,2011.Progress in impacts of aerosol on cloud properties and precipitation[J].Clim Environ Res,16(4):525-542.(in Chinese).

    • [40] 杨桃进,刘宇迪,眭敏,2017.不同浓度污染气溶胶对一次暴雨的影响[J].大气科学,41(4):882-896.Yang T J,Liu Y D,Sui M,2017.Impacts of different concentrations of anthropogenic pollutants on a rainstorm[J].Chin J Atmos Sci,41(4):882-896.(in Chinese).

    • [41] 杨正卿,银燕,刘聪,等,2012.云滴数浓度影响混合型层状云降水的数值模拟[J].大气科学学报,35(3):350-363.Yang Z Q,Yin Y,Liu C,et al.,2012.Numerical simulation of impact of cloud droplet number concentration on precipitation from mixed stratiform and convective clouds[J].Trans Atmos Sci,35(3):350-363.(in Chinese).

    • [42] 尹占娥,许世远,殷杰,等,2010.基于小尺度的城市暴雨内涝灾害情景模拟与风险评估[J].地理学报,65(5):553-562.Yin Z E,Xu S Y,Yin J,et al.,2010.Small-scale based scenario modeling and disaster risk assessment of urban rainstorm water-logging[J].Acta Geogr Sin,65(5):553-562.(in Chinese).

    • [43] 岳治国,刘晓东,梁谷,2011.气溶胶对北京地区不同类型云降水影响的数值模拟[J].高原气象,30(5):1356-1367.Yue Z G,Liu X D,Liang G,2011.Numerical simulation of influence of aerosols on different cloud precipitation types in Beijing area[J].Plateau Meteor,30(5):1356-1367.(in Chinese).

    • [44] 张晶,郑有飞,李云川,等,2011.石家庄市周边秸杆焚烧导致云凝结核变化的特征[J].大气科学学报,34(3):343-350.Zhang J,Zheng Y F,Li Y C,et al.,2011.Characteristics of CCN concentration change caused by straw burning around Shijiazhuang City[J].Trans Atmos Sci,34(3):343-350.(in Chinese).

  • 参考文献

    • [1] Bell T L,Rosenfeld D,Kim K M,et al.,2008.Midweek increase in US summer rain and storm heights suggests air pollution invigorates rainstorms[J].J Geophys Res,113(D2):D02209.

    • [2] 陈倩,银燕,金莲姬,等,2013.气溶胶影响混合相对流云降水的数值模拟研究[J].大气科学学报,36(5):513-526.Chen Q,Yin Y,Jin L J,et al.,2013.A numerical simulation study on the effect of aerosol layers on mixed phase convective cloud and precipitation[J].Trans Atmos Sci,36(5):513-526.(in Chinese).

    • [3] 陈思宇,黄建平,付强,等,2012.气溶胶对我国中东部地区秋季降水的影响[J].热带气象学报,28(3):339-347.Chen S Y,Huang J P,Fu Q,et al.,2012.Effects of aerosols on autumn precipitation over mid-eastern China[J].J Trop Meteor,28(3):339-347.(in Chinese).

    • [4] 陈卫东,付丹红,苗世光,等,2015a.北京地区城市环境对云和降水影响的个例数值模拟研究[J].地球物理学进展,30(3):983-995.Chen W D,Fu D H,Miao S G,et al.,2015a.Numerical simulation of urban environment impacts on clouds and precipitation in Beijing[J].Prog Geophys,30(3):983-995.(in Chinese).

    • [5] 陈卫东,付丹红,苗世光,等,2015b.北京及周边城市气溶胶污染对城市降水的影响[J].科学通报,60(22):2124-2135.Chen W D,Fu D H,Miao S G,et al.,2015b.Impacts of aerosols from Beijing and the surrounding areas on urban precipitation[J].Chin Sci Bull,60(22):2124-2135.(in Chinese).

    • [6] Colarco P,da Silva A,Chin M,et al.,2010.Online simulations of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depth[J].J Geophys Res,115(D14):D14207.

    • [7] 董昊,徐海明,罗亚丽,2012.云凝结核浓度对WRF模式模拟飑线降水的影响:不同云微物理参数化方案的对比研究[J].大气科学,36(1):145-169.Dong H,Xu H M,Luo Y L,2012.Effects of cloud condensation nuclei concentration on precipitation in convection permitting simulations of a squall line using WRF model:sensitivity to cloud microphysical schemes[J].Chin J Atmos Sci,36(1):145-169.(in Chinese).

    • [8] 段婧,毛节泰,2008.华北地区气溶胶对区域降水的影响[J].科学通报,53(23):2947-2955.Duan J,Mao J T,2008.Impacts of aerosol on regional precipitation in North China[J].Chin Sci Bull,53(23):2947-2955.(in Chinese).

    • [9] Eun S H,Kim B G,Lee K M,et al.,2016.Characteristics of recent severe haze events in Korea and possible inadvertent weather modification[J].SOLA,12:32-36.

    • [10] Gao Y,Wu T W,Chen B D,et al.,2013.A numerical simulation of microphysical structure of cloud associated with the 2008 winter freezing rain over Southern China[J].J Meteor Soc Japan,91(2):101-117.

    • [11] Gong D Y,Ho C H,Chen D L,et al.,2007.Weekly cycle of aerosol-meteorology interaction over China[J].J Geophys Res,112(D22):D22202.

    • [12] Haywood J M,Boucher O,2000.Estimates of the direct and indirect radiative forcing due to tropospheric aerosols:a review[J].Rev Geophys,38(4):513-543.

    • [13] Hobbs P V,Radke L F,Shumway S,1970.Cloud condensation nuclei from industrial sources and their apparent influence on precipitation in Washington state[J].J Atmos Sci,27(1):81-89.

    • [14] Jin M L,2005.Urban aerosols and their variations with clouds and rainfall:a case study for New York and Houston[J].J Geophys Res,110(D10):D10S20.

    • [15] Kalina E A,Friedrich K,Morrison H,et al.,2014.Aerosol effects on idealized supercell thunderstorms in different environments[J].J Atmos Sci,71(12):4558-4580.

    • [16] Levin Z,Cotton W R,2009.Aerosol pollution impact on precipitation[M].Dordrecht:Springer Netherlands.

    • [17] 刘洋,李诚志,刘志辉,等,2016.基WRF模式的新疆巴音布鲁克盆地强降雨天气数值模拟效果分析[J].干旱区研究,33(1):28-37.Liu Y,Li C Z,Liu Z H,et al.2016.Analysis on the numerical simulation of heavy rainfall based on WRF model in Bayanbuluk Basin[J].Arid Zone Research,33(1):28-37.(in Chinese).

    • [18] 马严枝,陆昌根,高守亭,2012.8.19华北暴雨模拟中微物理方案的对比试验[J].大气科学,36(4):835-850.Ma Y Z,Lu C G,Gao S T,2012.The effects of different microphysical schemes in WRF on a heavy rainfall in North China during 18—19 August 2010[J].Chin J Atmos Sci,36(4):835-850.(in Chinese).

    • [19] Menon S,Hansen J,Nazarenko L,et al.,2002.Climate effects of black carbon aerosols in China and India[J].Science,297(5590):2250-2253.

    • [20] Misra A K,Tripathi A,Naresh R,et al.,2016.Modelling and analysis of the effects of aerosols in making artificial rain[J].Model Earth Syst Environ,2(4):1-11.

    • [21] Morrison H,2012.On the robustness of aerosol effects on an idealized supercell storm simulated with a cloud system-resolving model[J].Atmos Chem Phys Discuss,12(4):10493-10533.

    • [22] Nugent A D,Watson C D,Thompson G,et al.,2016.Aerosol impacts on thermally driven orographic convection[J].J Atmos Sci,73(8):3115-3132.

    • [23] Reisin T,Levin Z,Tzivion S,1996.Rain production in convective clouds as simulated in an axisymmetric model with detailed microphysics.part I:description of the model[J].J Atmos Sci,53(3):497-519.

    • [24] Saleeby S M,Cotton W R,2005.A large-droplet mode and prognostic number concentration of cloud droplets in the Colorado state university regional atmospheric modeling system(RAMS).part II:sensitivity to a Colorado winter snowfall event[J].J Appl Meteor,44(12):1912-1929.

    • [25] 石荣光,刘奇俊,马占山,2015.利用GRAPES模式研究气溶胶对云和降水过程的影响[J].气象,41(3):272-285.Shi R G,Liu Q J,Ma Z S,2015.Numerical simulation of aerosol effects on cloud and precipitation using GRAPES model[J].Meteor Mon,41(3):272-285.(in Chinese).

    • [26] 石睿,王体健,李树,等,2015.东亚夏季气溶胶-云-降水分布特征及其相互影响的资料分析[J].大气科学,39(1):12-22.Shi R,Wang T J,Li S,et al.,2015.The spatial and temporal characteristics of aerosol-cloud-precipitation interactions during summer in East Asia[J].Chin J Atmos Sci,39(1):12-22.(in Chinese).

    • [27] 师宇,楼小凤,王广河,2016.气溶胶对北京地区云和降水影响的模拟研究[J].地理研究,35(10):1912-1924.Shi Y,Lou X F,Wang G H,2016.Numerical simulation of the effect of aerosol on cloud and precipitation in Beijing[J].Geogr Res,35(10):1912-1924.(in Chinese).

    • [28] Takeda T,Kuba N,1982.Numerical study of the effect of CCN on the size distribution of cloud droplets.Part Ⅰ.cloud droplets in the stage of condensation growth[J].J Meteor Soc Japan,61:375-387.

    • [29] Thompson G,Rasmussen R M,Manning K W,2004.Explicit forecasts of winter precipitation using an improved bulk microphysics scheme.part I:description and sensitivity analysis[J].Mon Wea Rev,132(2):519-542.

    • [30] Thompson G,Field P R,Rasmussen R M,et al.,2008.Explicit forecasts of winter precipitation using an improved bulk microphysics scheme.part II:implementation of a new snow parameterization[J].Mon Wea Rev,136(12):5095-5115.

    • [31] Twomey S,1977.The influence of pollution on the shortwave albedo of clouds[J].J Atmos Sci,34(7):1149-1152.

    • [32] van den Heever S C,Cotton W R,2007.Urban aerosol impacts on downwind convective storms[J].J Appl Meteor Climatol,46(6):828-850.

    • [33] 王桂新,2013.城市化基本理论与中国城市化的问题及对策[J].人口研究,37(6):43-51.Wang G X,2013.The basic theory of urbanization and problems and countermeasures of China's urbanization[J].Popul Res,37(6):43-51.(in Chinese).

    • [34] 王惠,刘晓莉,安俊琳,等,2016.南京不同天气和能见度下云凝结核的观测分析[J].气象科学,36(6):800-809.Wang H,Liu X L,An J L,et al.,2016.Observational study of cloud condensation nuclei under different weather and visibility in Nanjing[J].J Meteor Sci,36(6):800-809.(in Chinese).

    • [35] 王啸华,吴海英,唐红昇,等,2012.2009年7月7日南京短时暴雨的中尺度特征分析[J].气象,38(9):1060-1069.Wang X H,Wu H Y,Tang H S,et al.,2012.Mesoscale characteristic analysis on a shorttime torrential rain in Nanjing on 7 July 2009[J].Meteor Mon,38(9):1060-1069.(in Chinese).

    • [36] Warner J,Twomey S,1967.The production of cloud nuclei by cane fires and the effect on cloud droplet concentration[J].J Atmos Sci,24(6):704-706.

    • [37] 许世远,王军,石纯,等,2006.沿海城市自然灾害风险研究[J].地理学报,61(2):127-138.Xu S Y,Wang J,Shi C,et al.,2006.Research of the natural disaster risk on coastal cities[J].Acta Geogr Sin,61(2):127-138.(in Chinese).

    • [38] 徐小红,余兴,戴进,2009.气溶胶对秦岭山脉地形云降水的影响[J].气象,35(1):37-47.Xu X H,Yu X,Dai J,2009.Effect of aerosol on orographic precipitation in Qinling mountains[J].Meteor Mon,35(1):37-47.(in Chinese).

    • [39] 杨慧玲,肖辉,洪延超,2011.气溶胶对云宏微观特性和降水影响的研究进展[J].气候与环境研究,16(4):525-542.Yang H L,Xiao H,Hong Y C,2011.Progress in impacts of aerosol on cloud properties and precipitation[J].Clim Environ Res,16(4):525-542.(in Chinese).

    • [40] 杨桃进,刘宇迪,眭敏,2017.不同浓度污染气溶胶对一次暴雨的影响[J].大气科学,41(4):882-896.Yang T J,Liu Y D,Sui M,2017.Impacts of different concentrations of anthropogenic pollutants on a rainstorm[J].Chin J Atmos Sci,41(4):882-896.(in Chinese).

    • [41] 杨正卿,银燕,刘聪,等,2012.云滴数浓度影响混合型层状云降水的数值模拟[J].大气科学学报,35(3):350-363.Yang Z Q,Yin Y,Liu C,et al.,2012.Numerical simulation of impact of cloud droplet number concentration on precipitation from mixed stratiform and convective clouds[J].Trans Atmos Sci,35(3):350-363.(in Chinese).

    • [42] 尹占娥,许世远,殷杰,等,2010.基于小尺度的城市暴雨内涝灾害情景模拟与风险评估[J].地理学报,65(5):553-562.Yin Z E,Xu S Y,Yin J,et al.,2010.Small-scale based scenario modeling and disaster risk assessment of urban rainstorm water-logging[J].Acta Geogr Sin,65(5):553-562.(in Chinese).

    • [43] 岳治国,刘晓东,梁谷,2011.气溶胶对北京地区不同类型云降水影响的数值模拟[J].高原气象,30(5):1356-1367.Yue Z G,Liu X D,Liang G,2011.Numerical simulation of influence of aerosols on different cloud precipitation types in Beijing area[J].Plateau Meteor,30(5):1356-1367.(in Chinese).

    • [44] 张晶,郑有飞,李云川,等,2011.石家庄市周边秸杆焚烧导致云凝结核变化的特征[J].大气科学学报,34(3):343-350.Zhang J,Zheng Y F,Li Y C,et al.,2011.Characteristics of CCN concentration change caused by straw burning around Shijiazhuang City[J].Trans Atmos Sci,34(3):343-350.(in Chinese).

  • 地址:江苏南京宁六路219号南京信息工程大学    邮编:210044

    联系电话:025-58731158    E-mail:xbbjb@nuist.edu.cn    QQ交流群号:344646895

    大气科学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司