基于改进版NUIST CFS1.1的热带大气季节内信号及其对中国气温降水影响的预测评估
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(42088101;42030605)


Prediction of tropical intraseasonal oscillations and their impacts on air temperature and precipitation in China using the upgraded version of NUIST CFS1.1
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
  • |
  • 资源附件
    摘要:

    基于南京信息工程大学次季节气候预测系统(NUIST CFS1.1),通过调整成员的大气初始化方案并优化了集合预测方案,构建了性能更优、计算成本更低的9成员NUIST CFS1.1 Pro系统。进一步基于实时多变量Madden-Julian Oscillation(MJO)指数和两类北半球夏季季节内振荡(Boreal Summer Intraseasonal Oscillation,BSISO)指数BSISO1和BSISO2,评估了该预测系统对热带不同季节的大气季节内振荡(ISO)的预测技巧。结果表明,NUIST CFS1.1 Pro能分别提前26、17、12 d有效预测(距平相关高于0.5)MJO、BSISO1、BSISO2,对强事件(振幅>1)的有效预测时长能分别延长到30、21、13 d。此预测性能对比国内其他最新次季节动力模式如BCC_CSM2和FGOALS-f2有一定优势,同时在与国际S2S计划的8个主要业务预测系统的技巧对比中,NUIST CFS1.1 Pro在冬季MJO和夏季BSISO1预测上处于较为领先的水平,BSISO2的预测则处于中等水平;对不同位相的计算技巧显示,冬季MJO和夏季BSISO1的2、3、6、7位相较其他位相技巧更高。进一步的分析表明,NUIST CFS1.1 Pro能提前5候准确把握冬季MJO的东传特征,并能在一定程度上预测出其对我国气温异常的影响,尤其是对位相2、3时候的冷异常预测;而在夏季,则能提前4候正确预测BSISO1的北传、西北传特征,尤其能较好地预测西北太平洋上的对流和低层环流异常,从而成功预测出BSISO1造成的我国东部地区降水异常的空间形态。然而预测的强度较观测偏弱,这需要进一步的工作来改进。

    Abstract:

    Beyond conventional weather forecasts and seasonal climate predictions,a continuum of prediction across all timescales,known as weather-climate seamless prediction,has garnered considerable attention and progressed over the last decades.However,among predictions on various timescales,subseasonal predictions,bridging weather forecasts and short-term climate predictions still face challenges.This timescale typically extends beyond two weeks but falls short of a season,where the influence of initial conditions has faded away while the forcing from boundary conditions remains insignificant.Consequently,understanding the sources of subseasonal predictability and achieving effective subseasonal predictions encounter significant challenges.As reported in numerous previous studies,tropical intraseasonal oscillations (ISO),comprising the Madden-Julian Oscillation (MJO) and Boreal Summer Intraseasonal Oscillation (BSISO),can provide dominant sources of global subseasonal-to-seasonal (S2S) predictability.Based on the subseasonal climate forecast system of Nanjing University of Information Science and Technology (NUIST CFS1.1),the atmospheric initialization of individual members and ensemble strategy are slightly modified toward an upgraded version named NUIST CFS1.1 Pro,which consists of nine members and saves computational costs.Furthermore,using the real-time multivariate MJO index and two BSISO indices,BSISO1 and BSISO2,the prediction skills of tropical ISOs during different seasons are evaluated.The results show that skillful prediction (ACC>0.5) for MJO,BSISO1,and BSISO2 can extend to 26,17,and 12 lead days,respectively,and for strong events (amplitude> 1),it can be extended to 30,21,and 13 lead days,respectively.In predicting these tropical ISOs,the NUIST CFS1.1 Pro outperforms two newly-developed subseasonal forecast systems in China (i.e.,BCC_CSM2 and FGOALS-f2).Moreover,it achieves competitive performances compared to eight major operational prediction systems participating in the international S2S project,with a relatively leading level in predicting winter MJO and summer BSISO1,as well as a medium level in predicting BSISO2.As for the winter MJO and BSISO1 predictions,the target phases 2,3,6,and 7 display higher skills than the other four phases.Further analysis indicates that the NUIST CFS1.1 Pro can accurately capture the eastward propagation of the winter MJO at lead times of 21—25 days.Additionally,it partly predicts the MJO-related 2 m temperature anomalies in China,particularly the cold anomalies during phases 2 and 3.In summer,the NUIST CFS1.1 Pro well predicts the northward and northwestward propagation of BSISO1 at lead times of 16—20 days,especially anomalous convection and low-level circulation over the northwestern Pacific.This leads to successful predictions of the spatial pattern of precipitation anomalies in East China associated with BSISO1.However,the predictions of NUIST CFS1.1 Pro on these time scales severely underestimate tropical ISO signals and their impacts on air temperature and precipitation over China,warranting further efforts for improvement.In particular,there is ample room for the NUIST CFS1.1 to improve in the prediction of MJO teleconnections over China during the winter.For instance,the warm anomalies over most of China in phases 6 and 7 of the MJO cannot be successfully predicted,whereas the prediction of tropical convection and circulation displays good skill.

    参考文献
    相似文献
    引证文献
引用本文

伍继业,谢欣芮,罗京佳,2024.基于改进版NUIST CFS1.1的热带大气季节内信号及其对中国气温降水影响的预测评估[J].大气科学学报,47(2):284-299. WU Jiye, XIE Xinrui, LUO Jing-Jia,2024. Prediction of tropical intraseasonal oscillations and their impacts on air temperature and precipitation in China using the upgraded version of NUIST CFS1.1[J]. Trans Atmos Sci,47(2):284-299. DOI:10.13878/j. cnki. dqkxxb.20231225021

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-12-25
  • 最后修改日期:2024-01-21
  • 录用日期:
  • 在线发布日期: 2024-05-22
  • 出版日期: 2024-03-28

地址:江苏南京宁六路219号南京信息工程大学    邮编:210044

联系电话:025-58731158    E-mail:xbbjb@nuist.edu.cn    QQ交流群号:344646895

大气科学学报 ® 2025 版权所有  技术支持:北京勤云科技发展有限公司