基于深度学习的公路能见度分类及应用
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

江苏省气象局重点基金项目(KZ202105);江苏省气象局面上基金项目(KM202006)


Classification and application of highway visibility based on deep learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
  • |
  • 资源附件
    摘要:

    以VGG16为基准模型,融合批归一化处理、全局平均池化和联合损失函数,提出了一种基于卷积神经网络的高速公路雾天能见度等级分类方法。实验结果表明,改进后的神经网络模型的平均识别正确率达83.9%,相较于其他几种模型具有较高的正确率和较好的收敛性。将模型封装入业务系统后进行业务化检验,其平均识别正确率可达84.9%,且白天识别效果要优于夜间。通过系统监测到2019年4月4日京沪高速发生了一次团雾动态生消过程。该次团雾过程具有移动快、范围小、生存时间短的特征。系统的应用能够为交通管理部门应对团雾发生时的智能管控和决策调度提供技术支持。

    Abstract:

    Taking VGG16 as the benchmark model, integrating batch normalization, global average pooling and joint loss function, this paper proposed a highway fog visibility classification method based on the convolutional neural network.The experimental results show that the average recognition accuracy of the improved neural network model is 83.9%, which has higher accuracy and better convergence than other models.After the model is encapsulated into the business system for operational verification, the average recognition accuracy can reach 84.9%, and the recognition performance in the daytime is better than that at night.A dynamic generation and elimination process of agglomerate fog in Beijing-Shanghai Expressway on April 4, 2019 was monitored by the business system.The agglomerate fog process has the characteristics of fast movement, small range and short survival time.The application of the system can provide technical support for the traffic management department to deal with the intelligent management and control and decision-making scheduling when the fog occurs.

    参考文献
    相似文献
    引证文献
引用本文

黄亮,张振东,肖鹏飞,孙家清,周雪城.2022.基于深度学习的公路能见度分类及应用【J】大气科学学报.45.2:203.211

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-01-04
  • 最后修改日期:2022-03-03
  • 录用日期:
  • 在线发布日期: 2022-05-05
  • 出版日期:

地址:江苏南京,宁六路219号,南京信息工程大学    邮编:210044

联系电话:025-58731158    E-mail:xbbjb@nuist.edu.cn    QQ交流群号:344646895

大气科学学报 ® 2022 版权所有  技术支持:北京勤云科技发展有限公司