机器学习的原理及其在气候预测中的潜在应用
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(2016YFA0600703);国家自然科学基金资助项目(41875118)


Machine learning and its potential application to climate prediction
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    经历了两次“人工智能寒冬”之后,机器学习于近十年再次进入大众视野,且有腾飞发展之势,已在图像识别和语音识别系统等实际应用方面取得了巨大成功。从已知数据集中总结关键信息和主要特征,从而对新数据做出准确的识别和预测,分别是机器学习的主要任务和主要目标之一。从这个角度看,将机器学习整合到气候预测的思路切实可行。本文,首先以线性拟合参数(即斜率和截距)调整为例,介绍了机器学习通过梯度下降算法优化参数并最终得到线性拟合函数的过程。其次,本文介绍了神经网络的构建思路以及如何应用神经网络拟合非线性函数的过程。最后,阐述了深度学习之卷积神经网络的框架原理,并将卷积神经网络应用到东亚冬季逐月气温的回报试验,并与气候动力模式的回报结果相比较。本文将有助于理解机器学习的基本原理,为机器学习应用于气候预测提供一定的参考思路。

    Abstract:

    After two "Artificial Intelligence winters",machine learning has become a subject of intense of media hype and come up in countless articles,showing a promising future.Machine learning has gained a big success in image recognition and speech recognition systems.Refining key message and dominant features from the train datasets and making accurate prediction on the never-seen-before datasets are the major task and the ultimate goal of machine learning,respectively.From this perspective,it's feasible to integrate machine learning into climate prediction.Beginning with a simple example on finding the weights of a linear fitting,this study shows how machine learning updates weights through gradient descent algorithm and eventually obtains the linear fitting line.Next,this study illustrates the architecture of neural network and uses neural network algorithm to learn the true curve fitting a non-linear function.In the end,this study elaborates the architecture of deep learning such as convolutional neural network,and uses convolutional neural network model to hindcast winter monthly surface air temperature anomalies in East Asia.The results by deep learning are further compared with the hindcast by dynamical model-CanCM4i.This study will help to understand the fundamental of machine learning and provides insights how to integrate machine learning into climate prediction.

    参考文献
    相似文献
    引证文献
引用本文

贺圣平,王会军,李华,赵家臻.2021.机器学习的原理及其在气候预测中的潜在应用【J】大气科学学报.44.1:26.38

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-11-25
  • 最后修改日期:2020-12-21
  • 录用日期:
  • 在线发布日期: 2021-03-04
  • 出版日期:

地址:江苏南京,宁六路219号,南京信息工程大学    邮编:210044

联系电话:025-58731158    E-mail:xbbjb@nuist.edu.cn    QQ交流群号:344646895

大气科学学报 ® 2021 版权所有  技术支持:北京勤云科技发展有限公司