时空投影模型(STPM)的次季节至季节(S2S)预测应用进展
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

国家重点研发计划资助项目(2018YFC1505804)


Subseasonal-to-seasonal(S2S) prediction using the spatial-temporal projection model(STPM)
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    随着数值天气预报技术和季节动力预报系统的发展,短期天气预报及长期气候预测的能力持续提高,然而介于两者之间的次季节至季节(S2S,两周至三个月)预测技巧偏低,成为当今气象学界和业务服务的难题。南京信息工程大学国家特聘专家李天明教授团队于2012年研发了基于时空投影技术的统计预报模型(STPM),成功地对中国大陆降水和气温距平,以及区域极端降水、夏季高温、冬季低温和西太平洋台风群发事件等高影响天气进行提前10~30 d的预报,并在国家气候中心及多个省份开展了业务应用。STPM也成功应用于台湾春雨预报、南海季风爆发和ENSO预测等季节至年际变化的预测。本文对S2S预测的理论基础、STPM的发展和应用进行了完整的介绍,并讨论了S2S预测业务中所面临的挑战和未来展望。

    Abstract:

    With the current developments of numerical weather forecasting technology and seasonal prediction systems,the ability of short-term weather forecast and long-term climate prediction continues to improve.However,the prediction skill of the subseasonal to seasonal(S2S,two weeks to three months) system is relatively weak,and this has become a challenging issue for the meteorological community and operational services.In 2012,the research team led by Prof.Tim Li at Nanjing University of Information Science & Technology developed the spatial-temporal projection model (STPM).The STPM exhibits high skill in predicting the rainfall and temperature anomalies and extreme events in China,such as extreme precipitation,heatwave,extreme cold days and typhoon clustering events,at the lead time of 10 to 30 d.Real-time extended-range weather forecast have been carried out using the STPM at the National Climate Center and in several provinces.In addition to the subseasonal forecast,the STPM has also been successfully applied to the forecasts of spring rain in Taiwan,the onset of the South China Sea monsoon and ENSO.In the present paper,we introduce the physical basis of S2S prediction and the development and application of STPM,and discuss the challenges and future prospects of S2S prediction.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2019-10-28
  • 最后修改日期:2019-11-20
  • 录用日期:
  • 在线发布日期: 2020-04-30

地址:江苏南京,宁六路219号,南京信息工程大学    邮编:210044

联系电话:025-58731158    E-mail:xbbjb@nuist.edu.cn    QQ交流群号:344646895

大气科学学报 ® 2020 版权所有  技术支持:北京勤云科技发展有限公司