Abstract:Based on the hourly precipitation observed by automatic weather stations(AWS) in China and retrieved from CMORPH(CPC MORPHing technique) satellite data,the merged precipitation product at hourly/0.1°lat/0.1°lon temporal-spatial resolution in China is developed through the two-step merging algorithm of PDF(probability density function) and OI(optimal interpolation).In this paper,the quality of merged precipitation product is assessed from the points of temporal-spatial characteristics of error,accuracy at different precipitation rates and cumulative times,merging effect at three station network densities and monitoring capability of the heavy rainfall.Results indicate that:1)The merged precipitation product effectively uses the advantages of AWS observations and satellite product of CMORPH,so it is more reasonable both at the precipitation amount and spatial distribution;2)The regional mean bias and root-mean-square error of the merged precipitation product are decreased remarkably,and they have a little change with time;3)The relative bias of merged precipitation product is -1.675%,less than 15% and about 30% for the medium(1.0—2.5 mm/h),medium to large(1.0—8.0 mm/h) and heavy rainfall(≥8.0 mm/h),respectively,and the product quality is improved further with the cumulative time increases.The merged precipitation product can capture the precipitation process very well and have a definite advantage in the quantitatively rainfall monitoring.