广西沿海偏南风型暖区暴雨的数值模拟研究
投稿时间:2020-01-06  修订日期:2020-03-11  点此下载全文
引用本文:
摘要点击次数: 61
全文下载次数: 0
作者单位E-mail
智协飞 南京信息工程大学 zhi@nuist.edu.cn 
董甫 南京信息工程大学  
张玲 南京信息工程大学  
吉璐莹 南京信息工程大学  
朱寿鹏 南京信息工程大学  
基金项目:国家重点研发计划重点专项
中文摘要:利用WRFV3.6.1的8个云微物理参数化方案对2010-2016年华南汛期(4-9月)的6个偏南风型暖区暴雨个例进行模拟,并采用基于对象的诊断评估方法(MODE)对模拟结果进行评估。发现对于大多数个例,模式都能较好地模拟出暖区暴雨的降水带,对暖区降水带模拟最好的参数化方案是WSM6方案,其次是Lin方案;模拟效果较差的参数化方案为CAM5.1与NSSL 2-mon方案。选取模拟结果较好的个例进行诊断分析,发现不同参数化方案模拟的热力、动力条件以及云微物理特征存在较大差异。在此基础上,开展多方案集成试验,发现简单集合平均能够有效降低模式模拟的不确定性,产生更稳定的模拟结果。
中文关键词:WRF模式,云微物理参数化方案,暖区暴雨,MODE
 
Numerical Simulation of Southerly type of Warm-Sector Heavy Rainfall in Coastal Guangxi
Abstract:Eight cloud microphysics parameterization schemes (Lin, WSM6, Thompson, Morrison 2-mon, CAM5.1, WDM5, WDM6 and NSSL 2-mon) in WRFV3.6.1 were used to simulate six classical southerly type of warm-sector heavy rainfall (WSHR) in the rainy season over coastal Guangxi during 2010-2016, and the simulation results are evaluated by the Method for Object-based Diagnostic Evaluation (MODE). For most cases, the WRF model can well simulate the rain belt of WSHR. The WSM6 scheme performed best for average, followed by Lin scheme; By contrary, CAM5.1 and NSSL 2-mon are the schemes with poor simulation effect relatively. It is found that the thermal, dynamic and cloud microphysical characteristics of different schemes are preformed differently. Based on these results, the ensemble forecasting experiments are carried out by the method of ensemble mean (EMN), which suggested that the EMN can reduce the forecast uncertainly of model and produce more stable forecast results.
keywords:WRF model, Cloud microphysics parameterization schemes, Warm-sector heavy rainfall, Method for Object-based Diagnostic Evaluation
  查看/发表评论  下载PDF阅读器