2015/2016年极强厄尔尼诺事件下我国动力和统计结合实时气候预测研究
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

创新科学基金群体(41421004);国家杰出青年科学基金(41325018);国家自然科学基金面上项目(41575079);中国科学院国际创新团队


Hybrid dynamical and statistical climate prediction in China during the extremely strong El Niño of 2015/2016
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
  • |
  • 资源附件
    摘要:

    本文研究建立2015/2016年极强厄尔尼诺事件下我国动力和统计结合的气候预测模型,并开展2015年夏季和2016年冬季气候我国160个站点和主要区域实时气候预测。夏季降水的实时预测起报于2月,冬季气温的预测起报于10月。研究结果表明,尽管NCEP-CFSv2耦合气候模式能较好预测2015/2016年极强厄尔尼诺事件中海温异常的演变,但对我国160个站点夏季降水和冬季气温预测仍有较大的偏差。因此,基于NCEP-CFSv2耦合模式预测结果,分别建立我国160个站点冬季气温和夏季降水异常的动力和统计结合气候预测模型。同时,利用年际增量预测方法开展我国长江中下游夏季降水和华北冬季气温的区域气候预测。研究结果表明以上预测模型在2015/2016年的实时预测中较NCEP-CFSv2有更好的预测效能。相对于NCEP-CFSv2耦合模式的预测结果,2015年夏季降水距平空间相关系数ACC从0.21提高到0.31(超过0.01信度的显著性水平),距平同号率提高到60%,2016年冬季气温ACC从0.19提高到0.32(超过0.01信度的显著性水平),距平同号率提高到75%。

    Abstract:

    Real-time seasonal climate prediction was performed in China during the extremely strong El Niño event of 2015/2016,through a combination of dynamical and statistical climate prediction.Generally,real-time summer(winter) climate prediction in China starts in February(October) in every year.The results showed that,although the NCEP-CFSv2 coupled model predicted the evolution of the extremely strong El Niño event in 2015/2016 well,its performance in predicting the summer rainfall anomaly of 2015 and the winter temperature of 2016 at 160 stations in China was limited.Compared to observation,CFSv2 predicted a stronger East Asian summer monsoon and weaker East Asian winter monsoon.One of the reasons for this is that CFSv2 is poor at predicting the extratropical climate system.Thus,based on the climate prediction direct outputs of the NCEP-CFSv2 model,we created a hybrid dynamical and statistical prediction model for forecasting the precipitation anomaly and temperature anomaly at 160 stations in China in 2015/2016.The skill of the hybrid of statistical and dynamical prediction model was higher than that of the direct prediction results of the NCEP-CFSv2 model.The spatial anomaly correlation coefficient(ACC) of summer rainfall at 160 stations in China in 2015 increased from 0.21 to 0.31(exceeding the 99% significance level),along with the percentage of the same sign of the rainfall anomaly improving to 60% from 50%.The model reproducedthe observed flood pattern in southern China,as well as the drought pattern in summer 2015.Meanwhile,the prediction ACC of winter temperature in China in 2016 increased to 0.32 from 0.19,and the percentage of the same sign of the temperature anomaly increased to 75% from 62%.Moreover,the year-to-year increment prediction method proposed by Fan et al.(2007) was applied successfully to predict summer rainfall over the Yangtze River valley in 2015,and winter temperature over North China in 2016.The year-to-year increment method predicts the year-to-year increment of the climate variable instead of the climate anomaly,in which the year-to-year increment of the climate is defined as the climate variable of the current year minus that of the previous year.The year-to-year increment of the climate variable was firstly predicted by the statistical or dynamical model,and then the predicted climate anomaly or climate variable of the current year could be obtained by adding the predicted year-to-year increment to the observed one of the previous year.The advantage of the year-to-year increment is that it can amplify the prediction signal,especially the extra tropical climate signal.Furthermore,as the observed climate in the previous year is an accurate value containing the interannual and interdecadal signals,it further promotes the level of accuracy in predicting the interannual and interdecadal climate variable.The results showed that the summer rainfall anomaly over the middle and lower reaches of the Yangtze River valley in 2015 could be predicted successfully by the year-to-year increment;the predicted(observed) value in 2015 was 38.6%(31%).Meanwhile,the upward trend of the summer rainfall anomaly over the middle and lower reaches of the Yangtze River valley since the 1980s,and the downward trend since 2000,were also reproduced.The model reproduced the warming trend since the 1970s,and the slowly cooling trend since 1998,with the predicted(observed) winter temperature anomaly over North China being 1.20℃(0.51℃).However,there is still a long way to go in terms of improving the prediction skill level in China to a sufficiently high level.The extratropical climate prediction skill should be improved by improvement to thedynamical model.It is necessary to explore how to combine the dynamical climate model with the statistical climate model more effectively.Importantly,climate theory,methods and techniques,models,as well as climate dynamics suited for climate variability in China,should be further developed.

    参考文献
    相似文献
    引证文献
引用本文

范可,田宝强,刘颖,2016.2015/2016年极强厄尔尼诺事件下我国动力和统计结合实时气候预测研究[J].大气科学学报,39(6):744-755. FAN Ke, TIAN Baoqiang, LIU Ying,2016. Hybrid dynamical and statistical climate prediction in China during the extremely strong El Niño of 2015/2016[J]. Trans Atmos Sci,39(6):744-755. DOI:10.13878/j. cnki. dqkxxb.20160814003

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-08-14
  • 最后修改日期:2016-09-26
  • 录用日期:
  • 在线发布日期: 2016-12-27
  • 出版日期:

地址:江苏南京宁六路219号南京信息工程大学    邮编:210044

联系电话:025-58731158    E-mail:xbbjb@nuist.edu.cn    QQ交流群号:344646895

大气科学学报 ® 2024 版权所有  技术支持:北京勤云科技发展有限公司