第23卷第4期2000年12月

南京气象学院学报

Journal of Nanjing Institute of Meteorology

Vol. 23 No. 4

Dec. 2000

文章编号: 1000-2022(2000) 04-0560-08

东北北部冷暖旱涝趋势的初步研究

邹立尧1,马镜娴2,周嘉陵2

(1. 黑龙江省气象中心, 哈尔滨 150030; 2. 南京气象学院大气科学系, 南京 210044)

摘 要:根据 1951~1999 年黑龙江省代表站的历年逐月的气温、降水量资料,用计算趋势系数的方法,研究了东北北部冷暖旱涝趋势的问题。结果指出:进入 90 年代,东北北部夏季气温变暖现象更加显著;但过渡季节气温变暖的趋势已经结束;旱涝趋势的变化比冷暖趋势的变化更为复杂,具有不同的季节特征和地域特征。

关键词: 趋势系数; 气温; 降水

中图分类号: P467 文献标识码: A

区域冷暖旱涝趋势的研究,不仅可以为季节和年度短期气候预报提供预测背景,还可以为农作物品种培育、生产布局和经济发展提供环境生态背景,因而已经引起广泛的重视[1~3]。目前,比较一致地认为,高纬度增温是全球范围内气候趋势变化的一个最显著的现象。东北北部系我国纬度最高的区域,研究东北北部的冷暖趋势变化具有特别的意义。从气候角度考虑,冷暖和旱涝之间具有某种内在的联系,东北北部旱涝趋势的问题值得仔细分析。

东北北部冷暖旱涝趋势的研究已有结果提出。如潘华盛^[4] 认为: 近来黑龙江省生长季各月气温都有增温趋势。进入 90 年代, 春旱和夏涝趋于加重。本文将在文献[4] 的基础上, 系统地分析黑龙江省冷暖旱涝趋势。

1 资料和方法

施能等^[5]定义了气候趋势系数 $_{rxt}$, 若 $_{rxt}$ > $_{0}$, 意味着序列 $_{xt}$ } 呈现增暖或降水增多趋势; 若 $_{rxt}$ < $_{0}$, 意味着变冷或降水减少的趋势, 趋势系数 $_{rxt}$ 可用 $_{t}$ 检验方法进行统计检验。

本文采用 1951-01~1999-07 黑龙江省均匀分布的 6 个代表站逐月气温、降水量资料。除计算 1951~1999 年这个时段的气候趋势系数以外,还计算了另外约 30 个时段的气候趋势系数。这些时段是: 1961~1999 年, 1962~1999 年, 1963~1999 年, ..., 1990~1999 年。增加这些时段计算的目的有两点。第 1, 根据 1990~1999 年时段的计算结果, 可以分析 90 年代东北北部冷暖旱涝趋势的特点, 并可与 1951~1999 年近 50 年来的趋势加以比较。第 2, 根据 1961~1999 年, 1962~1999 年, ..., 1990~1999 年各个时段气候趋势系数的连续变化, 还可分析 1951~1999 年时段的冷暖旱涝趋势的稳定性、持续性等问题。

收稿日期: 2000-01-11; 改回日期: 2000-04-15

基金项目: 黑龙江省自然科学基金项目 "黑龙江作物生长季旱涝形成机制研究"资助

作者简介: 邹立尧, 男, 1964年9月生, 硕士, 高工

2 东北北部冷暖趋势演变的重要特点

2.1 近50年来增温趋势明显

对 6 个代表站 $1951-01\sim1999-07$ 逐月平均气温序列计算冷暖趋势系数(T)。 根据各月冷暖趋势值, 分别计算出 $3\sim5$ 月、 $6\sim8$ 月、 $9\sim11$ 月和 $12\sim2$ 月的平均值, 作为春、夏、秋、冬 4 个季节的冷暖趋势系数(表 1)。类似地, 计算 $4\sim9$ 月、 $10\sim3$ 月冷暖趋势系数的平均值, 作为生长季和非生长季的冷暖趋势系数(表 1)。

表 1 1951-01~1999-07东北北部冷暖趋势系数值

Table 1 The temperat	are trend co	efficients of	during	1951-01~1999-0/
----------------------	--------------	---------------	--------	-----------------

站名	春	夏	秋	冬	生长季	非生长季	全年
嫩江	0.41	0. 15	0. 17	0.36	0. 24	0.30	0. 27
齐齐哈尔	0. 42	0. 18	0. 22	0. 35	0. 27	0. 27	0. 27
佳木斯	0.41	0. 16	0. 14	0.36	0. 23	0.30	0. 27
哈尔滨	0. 37	0.07	0.08	0. 33	0. 17	0. 26	0. 22
鸡西	0.31	0. 14	0. 23	0.35	0. 20	0. 32	0. 26
牡丹江	0.35	0. 25	0. 22	0.40	0. 28	0. 34	0. 31

由表 1 可见: (1) 冷暖趋势系数值均为正值, 说明东北北部近 50 年来气温存在增暖的趋势。(2) 气温增暖的趋势以黑龙江省北部春季最为显著, 趋势系数超过 0.40。黑龙江省中部的哈尔滨夏、秋季节增暖幅度最小。(3) 春、冬季增暖幅度比夏、秋季要大, 非生长季增暖幅度比生长季要大。

Watanabe 等 $^{[7]}$ 认为亚洲北部 $(40 \sim 70 \text{ N}, 75 \sim 140 \text{ E})$ 平均气温在 $1951 \sim 1995$ 年期间显示出清楚的上升趋势。东北北部近 50 年来气温增暖的趋势是亚洲北部区域平均气温增暖的一个局部表现。

2.2 增暖幅度存在地域差异

就全省范围而言,近50年来存在气温增暖的趋势。如将黑龙江省北、中、南部分开考虑,仍然存在地域差异。6个代表站各月的冷暖趋势系数(表2)表明:1年之中有8个月(1、2、4、5、6、7、9、10月),气温增幅最小出现在中部的哈尔滨或鸡西。8月,哈尔滨和鸡西冷暖趋势系数为负,既稍有变冷趋势。

表 2 1951~1999 各月冷暖趋势系数值

Table 2	Mont hly	temperature	trend	co efficients	during	1951 ~ 199	9
---------	----------	-------------	-------	---------------	--------	------------	---

———— 站名	1月	2月	3月	4月	5月	6月	7月	8月	9月	10月	11月	12月
嫩江	0.36	0.55	0.36	0. 45	0.43	0. 23	0. 21	0. 01	0. 13	0. 24	0. 13	0. 16
齐齐哈尔	0.30	0. 54	0.41	0.46	0.39	0. 21	0. 26	0.09	0. 21	0. 26	0. 20	0. 22
佳木斯	0.38	0.55	0.41	0.49	0.32	0. 24	0.31	- 0.08	0.07	0. 13	0. 20	0. 15
哈尔滨	0.31	0.50	0.39	0. 47	0. 26	0. 17	0. 12	- 0.08	0.05	0.04	0. 13	0. 19
鸡西	0. 29	0. 54	0.37	0.39	0. 15	0. 25	0. 19	- 0.02	0. 20	0. 21	0. 27	0. 21
牡丹江	0.36	0.56	0.45	0.42	0. 17	0.31	0. 26	0. 16	0. 27	0. 18	0. 23	0. 29

2.3 近10年4季增暖趋势的相位不同

以上讨论的均为 1951~1999 年时段冷暖趋势系数的计算结果。如考虑不同时段, 例如 1990~1999 年时段, 则可讨论近 10 年以来的冷暖趋势。图 1~4 为约 30 个不同时段的趋势系数。

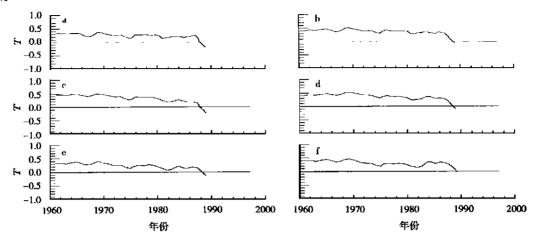


图 1 6 个代表站春季平均气温冷暖趋势随时间的变化

a. 嫩江; b. 齐齐哈尔; c. 佳木斯; d. 哈尔滨; e. 鸡西; f. 牡丹江

Fig. 1 Spring mean temperature trend coefficients versus time over a. Nenjiang; b. Qiqiharer; c. Jiamusi; d. Harerbin; e. Jixi; f. Mudanjiang

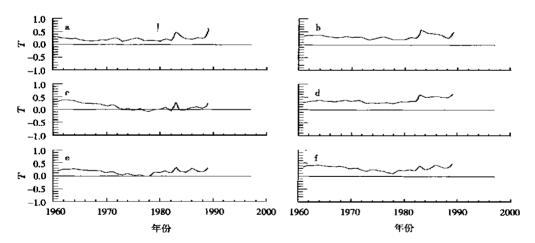


图 2 6 个代表站夏季平均气温冷暖趋势随时间的变化

a. 嫩江; b. 齐齐哈尔; c. 佳木斯; d. 哈尔滨; e. 鸡西; f. 牡丹江

Fig. 2 Summer mean temperature trend coefficients versus time over

a. Nenjiang; b. Qiqiharer; c. Jiamusi; d. Harerbin; e. Jixi; f. Mudanjiang

图 $1 \sim 4$ 中,横坐标上年份为时段的起始年。如 1970 年代表 $1970 \sim 1999$ 年时段(图 $1 \sim 2$) 或 $1970 \sim 1998$ 年时段(图 $3 \sim 4$)。 根据图 $1 \sim 4$,可以判断增温趋势的演变特征以及近 10 年增暖趋势的特点。现对春、夏、秋、冬 4 季分别讨论。

(1) 春季气温趋势系数的峰值出现在 1969 年(图1)。说明1969~1999年时段春季气温增

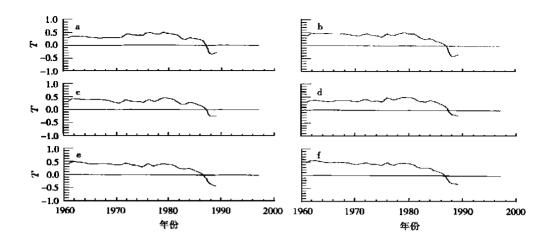


图 3 6 个代表站秋季平均气温冷暖趋势随时间的变化 a. 嫩江; b. 齐齐哈尔; c. 佳木斯; d. 哈尔滨; e. 鸡西; f. 牡丹江

Fig. 3 Autumn mean temperature trend coefficients versus time over a. Nenjiang; b. Qiqiharer; c. Jiamusi; d. Harerbin; e. Jixi; f. Mudanjiang

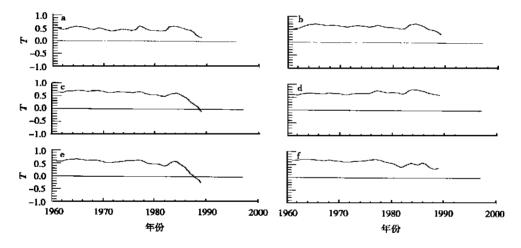


图 4 6 个代表站冬季平均气温冷暖趋势随时间的变化

a. 嫩江; b. 齐齐哈尔; c. 佳木斯; d. 哈尔滨; e. 鸡西; f. 牡丹江

Fig. 4 Winter mean temperature trend coefficients versus time over

a. Nenjiang; b. Qiqiharer; c. Jiamusi; d. Harerbin; e. Jixi; f. Mudanjiang

暖最为明显。值得指出的是,80年代后期以来,冷暖趋势系数已呈减小趋势。除牡丹江外,趋势系数曲线均与系数零值线相交,这意味着90年代时段的冷暖趋势系数已由正变负,由增暖转为变冷。

- (2) 夏季冷暖趋势系数的演变有两个特点(图 2)。第一, $1989 \sim 1998$ 年时段的趋势系数值大多位于曲线的峰值或次峰值(如图 2_a , 2_b , 2_c , 2_f),说明 90 年代夏季气温增暖现象非常显著。第二, 除佳木斯(图 2c) 外, 趋势系数曲线一般均位于系数零值线上方。表明只有增温幅度大小的变化, 没有增暖与变冷的转折。
 - (3) 秋季 6 个代表站秋季气温趋势系数的演变十分相似(图 3)。1980年以前, 趋势系数值

在 0.40 附近小幅振荡, 随后开始减小, 80 年代后期由正转负。近 10 年秋季气温呈现变冷趋势。

(4) 冬季 80 年代以来, 6 个代表站冬季气温趋势系数均有下降的趋势(图 4)。 其中, 嫩江、佳木斯、鸡西下降幅度大, 齐齐哈尔、哈尔滨、牡丹江下降幅度小; 佳木斯、鸡西已经出现负值, 呈现短时段的变冷趋势(图 4c, 4e)。

3 东北北部旱涝趋势演变的重要特点

3.1 近50年来春旱和夏涝有加重的趋势

根据各月旱涝趋势系数值, 求出春、夏、秋、冬 4 个季节的旱涝趋势系数(R)值以及生长季、非生长季和全年的旱涝趋势系数值(表 3)。

表 3 1951~1999 东北北部旱涝趋势系数值

站名	春	夏	秋	冬	生长季	非生长季	全年
嫩江	- 0.09	0.08	0. 01	- 0. 17	0. 01	- 0.10	- 0.04
齐齐哈尔	- 0.06	0.00	0. 10	- 0. 16	- 0.02	- 0.04	- 0.03
佳木斯	- 0.16	0.05	- 0.12	- 0. 14	- 0.08	- 0.11	- 0.09
哈尔滨	- 0.09	0.02	0.02	- 0. 12	- 0.05	- 0.04	- 0.04
鸡西	- 0.08	0.06	- 0.11	- 0.07	- 0.04	- 0.07	- 0.05
牡丹汀	0.00	- 0.04	- 0.04	- 0.02	- 0.02	0.00	- 0.01

Table 3 Precipitation trend coefficients during 1951 ~ 1999

由表 3 可见, 近 50 年来, 冬、春旱涝趋势系数一般为负值, 夏季为一般为正值; 似乎表明冬春降水具有减少的趋势, 夏季降水具有增多的趋势。

3.2 旱涝趋势的地域性明显

对比 1951~1999 年各月冷暖趋势系数(表 2) 与各月旱涝趋势系数(表 4), 可以发现旱涝趋势与冷暖趋势之间区别是:增暖趋势一般是全省性的; 旱涝趋势大多不是全省性的。表 4 显示出春旱有加重的趋势。但是, 从各月旱涝趋势系数看, 3 月干旱加重是全省性的; 4 月干旱加重的程度在不同的区域不同。夏涝加重的程度也存在地域差别。

表 4 1951~1999 各月旱涝趋势系数值

Table 4 Monthly precipitation trend coefficients during 1951 ~ 1999	Table 4	Monthly	precipitation	trend coefficients	during	1951 ~ 1999
---	---------	---------	---------------	--------------------	--------	-------------

站名	1月	2月	3月	4月	5月	6月	7月	8月	9月	10月	11月	12月
嫩江	- 0.20	- 0.20	- 0.27	0.08	- 0.09	0. 29	0.08	- 0.14	- 0.13	0. 11	0.06	- 0.10
齐齐哈尔	- 0.35	- 0.08	- 0.12	0.09	- 0.14	0.04	0.04	- 0.08	- 0.06	0. 22	0. 15	- 0.06
佳木斯	- 0.31	- 0.12	- 0.13	- 0.25	- 0.10	0.37	- 0.20	- 0.02	- 0.25	- 0.12	0.00	0.01
哈尔滨	- 0.22	- 0.07	- 0.10	- 0.23	0.08	0.06	- 0.20	0. 19	- 0.19	- 0.05	0. 28	- 0.06
鸡西	- 0.09	- 0.15	- 0.06	- 0.12	- 0.05	0. 17	0.06	- 0.07	- 0.21	0.00	- 0. 12	0.03
牡丹江	0.08	- 0.11	- 0.02	0.01	0.02	0.07	- 0.01	- 0.17	- 0.17	0.02	0.04	- 0.03

3.3 近10年旱涝趋势的相位存在时空差异

近 10 年冷暖趋势的相位存在季节差别,不存在定性的空间差别(图 1~4)。近 10 年旱涝

趋势的相位不仅存在季节差别,而且存在定性的空间差别(图 5~8)。

- (1) 春季 1951 ~ 1999 年近 50 年来春旱加重的趋势, 到 90 年代, 发生了很大的变化。第一, 黑龙江省南部春旱显著加重, 但黑龙江省北部的嫩江和中部的佳木斯春季降水量已有增多的趋势(图 5)。
- (2) 夏季 1989~1998 年旱涝趋势系数(图 6)表明:进入 90 年代,嫩江、鸡西、牡丹江夏季降水趋势减少;佳木斯、哈尔滨趋势增多。

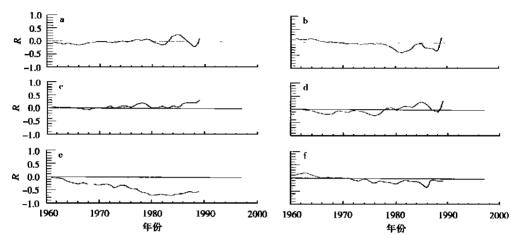


图 5 6 个代表站春季平均旱涝趋势系数随时间的变化

a. 嫩江; b. 齐齐哈尔; c. 佳木斯; d. 哈尔滨; e. 鸡西; f. 牡丹江

Fig. 5 Spring mean precipitation trend coefficients versus time over a. Nenjiang; b. Qiqiharer; c. Jiamusi; d. Harerbin; e. Jixi; f. Mudanjiang

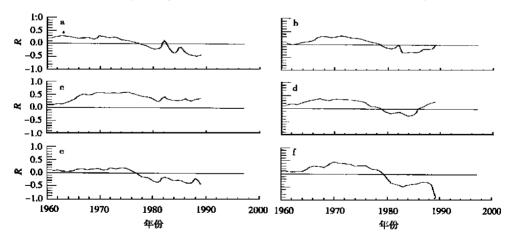


图 6 6 个代表站夏季平均旱涝趋势系数 随时间的变化

a. 嫩江; b. 齐齐哈尔; c. 佳木斯; d. 哈尔滨; e. 鸡西; f. 牡丹江

Fig. 6 Summer mean precipitation trend coefficients versus time over

a. Nenjiang; b. Qiqiharer; c. Jiamusi; d. Harerbin; e. Jixi; f. Mudanjiang

(3) 秋季 90 年代秋季旱涝趋势的主要特点是: 哈尔滨呈现增多趋势, 嫩江呈现减少趋势, 其余区域大致正常(图 7)。

(4)冬季90年代全省范围内冬季降水均呈减少趋势(图8)。

概括而言,不同季节、区域的 90 年代旱涝趋势不同。在南部的鸡西、牡丹江,冬、春、夏 3 季降水均处于减少趋势;在中部的哈尔滨、佳木斯,春、夏、秋 3 季降水呈现降水增多趋势;在北部的嫩江,夏、秋、冬 3 季降水为减少趋势。

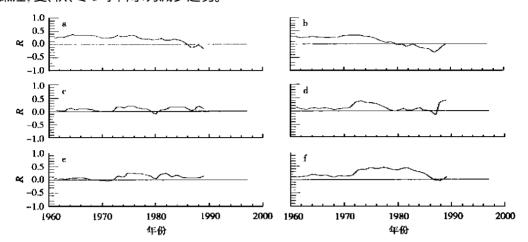


图 7 6 个代表站秋季平均旱涝趋势系数随时间的变化

a. 嫩江; b. 齐齐哈尔; c. 佳木斯; d. 哈尔滨; e. 鸡西; f. 牡丹江

Fig. 7 Autumn mean precipitation trend coefficients versus time over a. Nenjiang; b. Qiqiharer; c. Jiamusi; d. Harerbin; e. Jixi; f. Mudanjiang

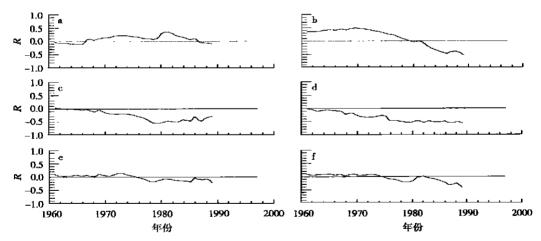


图 8 6 个代表站冬季平均旱涝趋势系数 随时间的变化

a. 嫩江; b. 齐齐哈尔; c. 佳木斯; d. 哈尔滨; e. 鸡西; f. 牡丹江

Fig. 8 Winter mean precipitation trend coefficients versus time over a. Nenjiang; b. Qiqiharer; c. Jiamusi; d. Harerbin; e. Jixi; f. Mudanjiang

5 结 论

近50年来,东北北部气温存在变暖的趋势。冬、春季增暖幅度大,夏、秋季增暖幅度小。90年代,东北北部气候变暖的趋势发生了两点重要的变化。第一,夏季气温增暖的现象更加显著。

第二,在过渡季节的春、秋季,气温增暖的趋势已经结束,开始转为变冷的趋势。这些变化对生长季热量条件及农作物布局的影响值得关注。

东北北部旱涝趋势变化的问题,比冷暖趋势变化的问题更为复杂,主要表现在这种趋势的变化具有不同的季节特征和地域特征。进入90年代,冬季降水量在全省范围内均存在减少的趋势。其他季节旱涝的趋势在不同的地域情况不一样,如黑龙江东南部的鸡西、牡丹江春旱加重,中部的佳木斯、哈尔滨夏涝加重等。

参考文献:

- [1] 施 能, 陈 辉, 屠其璞 1951~1994 年我国东部夏季雨带的统计诊断分析 J]. 南京气象学院学报, 1997, 20(2):181~185
- [2] 王 宇, 缪启龙, 肖 伟. 云南省 40 年来气温场变化的基本特征[J]. 南京气象学院学报, 1996, 19(4): 478~481
 - 3] 罗哲贤, 屠其璞. 人类活动与气候变化[M]. 北京: 气象出版社, 1993. 1~96
- [4] 潘华盛."低温旱涝对农作物产量品质的影响及低温旱涝长期预报方法研究"的技术总结报告[J].黑龙江气象,1998 (增刊):1~11
- [5] 施 能, 曹鸿兴. 近 42 年我国冬季气温、降水趋势及年代际变化的成因分析[C]. 见: 曹鸿兴, 李月洪, 魏凤英主编. 我国短期气候变化及成因研究. 北京: 气象出版社. 1996. 49~54
- [6] 董谢琼, 段 旭. 西南地区降水量的气候特征及变化趋势[J]. 气象科学, 1998, 18(3): 239~247
- [7] WATANABE M, NITTA T. Decadal changes in the atmospheric circulation and associated surface climate variations in the northern hem isphere winter [J]. J Climate, 1999, 12(2): 494 ~ 510

Preliminary study on trends of temperature and precipitation in the north of the northeast China

Zhou Li-yao¹, Ma Jing-xian², Zhou Jia-ling²

(1. Meteorological Center of Heilongjiang Province, Haerbin 150030;

2. Department of Atmosperic Science, NIM, Nanjing 210044)

Abstract: The trends of temperature and precipitation in the north of the Northeast China are studied by using the trend coefficient based on the 1951 ~ 1999 data over 6 stations in Heilongjiang Province. Results show that during the recent 10 years there exist more significant ascent trend of summer temperature than that in the period 1951 ~ 1999 and the descending trends of spring and autumn temperature and that the precipitation trends have obvious difference in various seasons and various locations, exhibiting the complex characteristics.

Key words: trend coefficient; temperature; precipitation