Journal of Nanjing Institute of Meteorology

热带气旋强度影响其移动的物理机制^{*}

田永祥 赵远东*

(南京气象学院气象学系,南京 210044)

摘 要应用无基本气流的无辐散正压模式研究热带气旋强度影响其移动的物理机制。结果表明: (1)弱(强)热带气旋的大尺度β涡旋弱(强),通风气流速度小(大),因而其移速慢(快); (2)弱的与强的热带气旋的大尺度β涡旋的方位位相之差、通风气流方向之差都很小,因此其移向的差别也很小; (3)热带气旋移速振荡和移向摆动的周期与小尺度涡旋活动的周期相接近。在热带气旋内部区域,弱(强)热带气旋的切向风速小(大),小尺度涡旋活动的周期长(短)。因此,弱(强)热带气旋移速振荡和移向摆动的次数少(多)。

关键词 热带气旋,强度,影响,移动

分类号 P444

陈联寿¹¹指出:热带气旋结构是影响其移动的一个重要因子。后来, Chan 和 Williams²¹研 究了热带气旋的强度和水平尺度对其移动的影响。Fiorino 和 Elsberry⁶¹研究了热带气旋内部、 外部结构与其移动的关系。应当指出,这些研究多为敏感性试验,缺少机理分析。

罗哲贤和田永祥^{^{β~91}}应用正压和斜压模式研究了热带气旋移动的机理。结果表明:(1)在 热带气旋非对称流场中,不但有大尺度β涡旋,而且还有小尺度涡旋。(2)小尺度涡旋与大尺度 β涡旋相互作用导致热带气旋作加速、减速、转向和逆时针打转等多种运动。(3)采用考虑小尺 度涡旋作用的改进方法计算的通风气流矢量与热带气旋移动矢量密切相关。

上述的研究成果为深入地阐明热带气旋结构影响其移动的物理机制奠定了基础。

本文应用无基本气流的无辐散正压模式研究热带气旋强度对其移动的影响,并着重阐明 其内在的物理机制。

1 数值模式

采用无辐散正压模式,假设基本气流为零,该模式的控制方程为

$$\frac{\partial \dot{\cdot}^{2} \Psi}{\partial t} = - J(\Psi, \dot{\cdot}^{2} \Psi) - \beta \frac{\partial \Psi}{\partial x}$$
(1)

式中 Ψ 为扰动流函数(以后简称为流函数)。方程(1)右端第一项为非线性相对涡度平流,亦称 非线性项或雅可比项;右端第二项为线性行星涡度平流,亦称线性 β 项。

* 本院 1990 级学生于银霞参加本研究的计算工作
收稿日期: 1996-04-02; 改回日期: 1996-10-07

^{*} 南京气象学院科研基金资助

热带气旋的初始切向风速廓线¹⁾为

$$V(r) = V_{\rm M}(\frac{r}{r_{\rm M}}) \exp\{\frac{1}{b} [1 - (\frac{r}{r_{\rm M}})]^b\}$$
(2)

式中 $r = (x - x_0)^2 + (y - y_0)^2$ 为径向距离, (x_0, y_0) 为热带气旋中心的坐标, V_M 为最大风速, r_M 为最大风速半径, 而b为决定热带气旋形状的因子。与(2)式相应的热带气旋的初始涡度场⁰¹为

$$\mathcal{I}(r) = \frac{2V_{\rm M}}{r_{\rm M}} \left[1 - \frac{1}{2} \left(\frac{r}{r_{\rm M}} \right)^b \right] \exp\left\{ \frac{1}{b} \left[1 - \left(\frac{r}{r_{\rm M}} \right)^b \right] \right\}$$
(3)

根据已知的初始涡度场 $\mathcal{G}_{x,y}$ 求解泊松方程

$$\dot{\psi}^{2}\Psi(x,y) = \mathcal{L}(x,y) \tag{4}$$

得到热带气旋的初始流函数场 $\Psi(x,y)$ 。

数值试验区域是一个纬向通道。在通道的东西、南北方向各取 51 个网格点(即 M = N = 51)。网格是均匀的,网格距取 50km。在通道的东—西方向取周期性的边界条件:

$$\Psi_{1,j} = \Psi_{M-1,j}, \quad \Psi_{M,j} = \Psi_{2,j} \tag{5}$$

在通道的南、北边界取法向方向流函数梯度为零的边界条件

$$\Psi_{i,1} = \Psi_{i,2}, \qquad \Psi_{i,N} = \Psi_{i,N-1} \tag{6}$$

在(5)式和(6)式中,下标 i 自西向东增加;下标 j 自南向北增加。

模式方程(1)中的雅可比项采用 Arakawa¹⁰¹设计的有限差分格式计算, Rossby 参数 β 取 2. 211 1×10⁻¹¹m⁻¹·s⁻¹(在 15 N 的数值), 即采用了 β 平面近似。

2 数值试验结果

为了考察热带气旋强度对其移动的影响,本研究试验了 A、B 和 C 三种方案,其热带气旋的最大风速 V_{M} 分别取为 20、35 和 50m · s⁻¹,最 50 $\int_{-\infty}^{\infty}$

大风速半径 r^M 均取为 100km, 而形状因子 b 均取 为 1。根据(2)式确定各方案热带气旋的初始切向 风速廓线(图 1)。由(3)式和(4)式分别求得热带 气旋的初始涡度场和流函数场。应用超张弛迭代 法求解(1)式。采用 '三步法 "起步的中央差格式进 行时间积分。时间步长取 10m in, 总积分时间为 4 [™]/₄ 个模式日。在数值积分过程中, 应用二次曲面拟合 方法由流函数的分布确定热带气旋中心的位置。

数值试验结果表明: 热带气旋的移动与其强度有关(图 2、图 3)。弱热带气旋移速慢,强热带气旋移速快。弱的、中等的和强的热带气旋的最大移速分别为 $3.2m \cdot s^{-1}$ 、 $5.3m \cdot s^{-1}$ 和 $7.1m \cdot s^{-1}$ 。 三种不同强度的热带气旋总体上均向西北偏北方向移动, 其移向的差别很小。上述的试验结果与 Chan 和 Williams⁰¹的基本一致。

热带气旋的移速随时间振荡、移向随时间摆动。在4个模式日中,弱的、中等的和强的热带气

44

旋分别有 4 次、7 次和 10 次由减速到加速的变化 过程(图 3a)、其移速振荡的平均周期分别为 24h、 13. 7h 和 9. 6h。在热带气旋由减速到加速的变化 过程中,其移向一般由偏西转为西北偏北,或伴随 一次逆时针打转运动。例如:在 43~56h 期间,弱 热带气旋的移速经历了由 1. 7 m·s⁻¹减小到 0. 6m·s⁻¹,然后又增加到 3. 1m·s⁻¹的变化;其 移向由偏西转为偏北(图 2、图 3)。又如:在 14~ 24h 期间,强热带气旋的移速由 2. 9m·s⁻¹减小到 0. 9m·s⁻¹,然后又增加到 5. 9m·s⁻¹;移向由西 北先后转向西南、南、东、偏北和西北,即经历了一 次逆时针打转运动(图 2、图 3)。

热带气旋的移动与非对称环流有关。在本研 究中,我们把流函数 $\Psi(x, y, t)$ 分解为其轴对称分 量 $\Psi_s(x, y, t)$ 和非对称分量 $\Psi_a(x, y, t)$,并计算非 对称流函数场中的通风气流速度 V_{sf} ,方向 Θ_f 以及 V_{sf} , Θ_f 与热带气旋移速 V_s ,移向 Θ_c 的相关系数 R_v , $R_0^{\theta \sim 61}$ 。由图4可见,弱热带气旋的 V_{sf} 与 V_c 的相关 更为密切, R_v 的最大值可达 0.81。强热带气旋的 V_{sf} 与 V_c 的相关相对较弱, R_v 的最大值为 0.65。最 佳相关尺度^{6,91}一般为 300~400km。各方案 R_{θ} 有 与图 4 相类似的分布, $\Theta_R \circ \Lambda \to R_v$ 。弱热带气旋 的 R_{θ} 之最大值为 0.61。

由于通风气流与热带气旋移动相关密切,所 以,可以把通风气流作为热带气旋路径预报的一 个参考指标。

3 结果分析

为了更清楚地了解热带气旋强度影响其移动 的机理,我们进行了流函数倾向分析。(1)式可改写为

图 2 方案 A(--)、B(- ·-)和 C(----)的热带气旋路径 纵、横坐标上的数字为网格点的标号, 网格距为 50km

Fig. 2 Tropical cyclone paths from the same schemes as in Fig. 1 with numbers on the figure frame giving gridpoint coordinates at grid spacing of 50km

$$\frac{\partial \Psi}{\partial t} = H^{-1}[-J(\Psi, \dot{x}^{2}\Psi)] + H^{-1}[-\beta \frac{\partial \Psi}{\partial x}]$$
(7)

式中 $\operatorname{H}^{-1}[F]$ 是···²($\frac{\partial \Psi}{\partial}$) = F 的求逆运算。将流函数 Ψ 的对称分量 Ψ_{a} 和非对称分量 $\Psi_{a}(\Psi = \Psi + \Psi_{a})$ 代入(7) 式, 得到

 $\frac{\partial \Psi}{\partial a} = H^{-1}[-J(\Psi_{s}, \dot{\varphi}^{-2}\Psi_{s})] + H^{-1}[-J(\Psi_{a}, \dot{\varphi}^{-2}\Psi_{s})] + H^{-1}[-\beta_{V_{s}}] + H^{-1}[-\beta_{V_{s}}]$ (8) L式右端各项依次为下列因子所产生的流函数倾向: (1) 对称气流对非对称涡度的平流; (2) 非 对称气流对对称涡度的平流; (3) 线性 β 项的对称分量; (4) 线性 β 项的非对称分量。

应当指出,在(8)式的右端已略去了 H⁻¹[-J($\Psi_{s}, \cdot \cdot \cdot {}^{2}\Psi_{s}$)] 项,因为对称气流对对称涡度的 平流为零。另外,由于 H⁻¹[-J($\Psi_{s}, \cdot \cdot {}^{2}\Psi_{s}$)]比 H⁻¹[-J($\Psi_{s}, \cdot \cdot {}^{2}\Psi_{s}$)]或 H⁻¹[-J($\Psi_{s}, \cdot \cdot {}^{2}\Psi_{s}$)] 项小

图 3 方案 A(--)、B(- ·-)和 C(---)的热带气旋移速 V_c(a)、移向 θ_c(b)随时间的演变 Fig. 3 Temporal variations of translation speed in tropical cyclone V_c and direction θ from the same schemes as in Fig. 1

一个数量级,所以也被略去。

- 3.1 热带气旋强度影响其移速的机理分析
- 3.1.1 热带气旋移速与大尺度 β 涡旋强度的关系

热带气旋移速与通风气流速度密切相 关,而通风气流速度一般又决定了大尺度 β 涡旋的强度。分析流函数倾向结果表明:由 线性 β 项的对称分量– βv_s 引起的流函数 倾向为偶极子型分布,且对于热带气旋中 心呈东–西向对称(图略)。它产生热带气 旋非对称流场中的大尺度 β 涡旋对⁸⁾。作⁴⁹ 为一种涡源和涡汇,它维持和加强了大尺 度 β 涡旋对。

显然, 大尺度 β 涡旋的强度与热带气 旋的切向风速 V(其对称分量为 v_s , 最大值 为 V_m)有关。由图 5 可见, 大尺度 β 涡旋的 强度与热带气旋的强度(以其最大风速 V_m 表征) 成比例。例如, 在第 42h, 弱热带气旋 大尺度气旋性和反气旋性 β 涡旋的强度分 别为 – 71 × 10⁴m · s⁻¹和 70 × 10⁴m² · s⁻¹ (图 6), 两 β 涡旋中心之间的距离 d_l 为 887km; 强热带气旋大尺度气旋性和反气旋

图 4 万条 A(--)、B(-·-)和 C(---)的 R 随计算 V_y圆形区域的半径 r 的变化

V vf from the same schemes as in Fig. 1

性 β 涡旋的强度分别为-232×10⁴m²·s⁻¹和 220×10⁴m²·s⁻¹, $d\iota$ 为 375km。因此, 在热带气旋中心附近, 沿 $d\iota$ 方向强热带气旋的非对称流函数梯度比弱热带气旋的大得多。由于通风气流速度与非对称流函数梯度成正比, 而且它又与热带气旋移速密切相关, 所以强热带气旋比弱热带气旋移速快。

3.1.2 热带气旋移速振荡与小尺度涡旋的关系

热带气旋移速振荡与小尺度涡旋的活动 有关。流函数倾向分析结果表明:由对称气流 对非对称涡度的平流引起偶极子型的流函数 倾向(图略)。这种流函数倾向产生小尺度涡 旋、并使它绕热带气旋中心逆时针旋转^{®1}。在 小尺度涡旋发展的过程中,它的方位位相与大 尺度 β 涡旋的方位位相之差随时间增大,通风 气流速度随时间减小,因而导致热带气旋减速 移动。在小尺度涡旋减弱并与大尺度 β 涡旋的 于重合的过程中,它的位相与大尺度 β 涡旋的 位相之差随时间减小,通风气流速度随时间增 大,因而导致热带气旋加速移动。于是便使热 带气旋移速产生振荡。

在 4 个模式日中, 弱的、中等的和强的热 带气旋的非对称流场中分别有 4 次、7 次和 10 次小尺度涡旋活动。小尺度涡旋活动的周期与 热带气旋移速振荡的周期相接近。因此, 热带 气旋移速振荡与其强度有关。

分析各方案热带气旋非对称流场随时间 的演变,结果表明:小尺度涡旋的平均尺度 *d*。 为 200km。因此,小尺度涡旋对绕热带气旋中 心逆时针旋转所经过的圆形区域的半径 *r* 也

Fig. 5 Temporal variations of the intensity of large-scale cyclonic beta gyre in the tropical cyclone from the same schemes as in Fig. 1

为 200km。在 r = 200km 处, 根据(2) 式计算的弱的、中等的和强的热带气旋的切向风速 V(r)分别为 14. 7m · s⁻¹、25. 8m · s⁻¹和 36. 8m · s⁻¹。 三种热带气旋以 V(r) 引导小尺度涡旋, 使其 沿半径 r = 200km 的圆运行一周所需要的时间 T(可近似地视其为小尺度涡旋的活动周期) 分 别为 23. 7h、13. 6h 和 9. 5h。显然, 各方案小尺度涡旋活动的周期与相应热带气旋移速振荡的 周期非常接近。

总之,弱(强)热带气旋的小尺度涡旋活动周期长(短)。由于每一次小尺度涡旋活动都伴随 一次热带气旋移速振荡,所以弱(强)热带气旋移速振荡的次数少(多)。

3.2 热带气旋强度影响其移向的机理分析

3.2.1 热带气旋移向与大尺度 β 涡旋方位位相的关系

热带气旋移向与通风气流方向密切相关,而通风气流方向一般又决定于大尺度反气旋性、 气旋性两 β 涡旋中心的连线与x轴的交角,即大尺度 β 涡旋的方位位相 $\alpha(\alpha$ 沿逆时针方向增 加)。流函数倾向分析结果表明:对称气流对非对称涡度的平流不但逆时针旋转小尺度涡旋,而 且还逆时针旋转大尺度 β 涡旋。从理论上讲, α 应随时间增加。但是,在热带气旋外部区域(r>

Fig. 6 Asymmetric streamfunction Ψ_a at 42h at intervals of 15, 30 and 50 10^4 m² · s⁻¹ for (a) the scheme A, (b) B and (c) C

500km) 环流较弱的情况下(图1), α 还与小尺度涡旋的活动有关。

分析各方案的热带气旋非对称流场随时间的演变,结果表明:大尺度 β 涡旋的位相 α 随 时间波动变化。以方案 B 为例, α 一般变化于 0 ° 60 之间(图略)。因此,中等的热带气旋的移 向 θ(由近似的关系式 θ 360 ° α 确定)一般变化于 360 ° 300 之间(图 3_b),即总体上它是 向西北至偏北方向移动(图 2)。

在方案 A、B 和 C 中, 大尺度 β 涡旋的平均尺度 d_l 为 1 000km。因此, 大尺度 β 涡旋中心到 热带气旋中心的平均距离(即 $\frac{d_l}{2}$)为 500km。由图 1 可知, 在 $r = 500 \sim 1$ 000km 的范围内, 三种 方案热带气旋的切向风速 V(r) 相差很小。在 4 个模式日中, 各方案的热带气旋以 V(r) 引导大 尺度 β 涡旋, 使其绕热带气旋中心逆时针旋转的角度 α 也相差很小(图略)。因此, 弱的、中等 的和强的热带气旋移向的差别不大。

3.2.2 热带气旋移向摆动与小尺度涡旋的关系

热带气旋移向摆动与小尺度涡旋的活动有关。如前所述,每一次小尺度涡旋活动都伴随热带气旋移速振荡和移向摆动。在小尺度涡旋绕热带气旋中心逆时针旋转的过程中,通风气流也随之逆时针旋转。旋转的通风气流引导热带气旋作转向或逆时针打转运动¹⁰。

应当指出,如图2所示的热带气旋由向偏西转向偏北,表面上是移向的顺转,实质上却是 由小尺度涡旋活动引起的逆时针打转运动,只不过逆时针打转的时间尺度很短、空间尺度很小 罢了。

4 结 语

综上所述,可得到如下的结论:

(1) 弱热带气旋移速慢,强热带气旋移速快。弱的与强的热带气旋移向的差别很小。

(2) 通风气流与热带气旋移动密切相关。弱(强) 热带气旋非对称流场中的大尺度β 涡旋弱
(强), 通风气流速度小(大)。因此其移速慢(快)。弱的与强的热带气旋非对称流场中大尺度β
涡旋的方位位相之差以及通风气流方向之差都很小,因此它们移向的差别也很小。

(3) 热带气旋移速振荡、移向摆动的周期与小尺度涡旋活动的周期相接近。在热带气旋内

1期

参考文献

- 陈联寿.热带气旋运动研究和业务预报的现状和发展.见:全国台风科研协作技术组、上海台风研究所主编.台风会议 文集.北京:气象出版社,1985.6~30
- 2 Chan J C L, Williams R T. Analytical and numerical studies of the beta-effect in tropical cyclone motion. Part : Zero mean flow. J Atmos Sci, 1987, 44(9): 1257 ~ 1265
- 3 Fiorino M, Elsberry R L. Some aspects of vortex structure related to tropical cyclone motion. J Atom s Sci, 1989, 46(7): 975 ~990
- 4 Tian Yongxiang, Luo Zhexian. Vertical structure of beta gyres and its effect on tropical cyclone motion. Advances in Atmospheric Sciences, 1994, 11(1): 43 ~ 50
- 5 田永祥.非对称环流的细致结构与台风路径的摆动.南京气象学院学报,1994,17(4):399~404
- 6 Tian Yongxiang. Ventilation flow in a baroclinic vortex related to tropical cyclone motion. Acta Meteorologica Sinica, 1995, 9(3): 338 ~ 348
- 7 田永祥.热带气旋逆时针打转物理机制的研究.南京气象学院学报,1995,18(3):361~367
- 8 田永祥.小尺度涡旋的形成及其对热带气旋移动的影响.应用气象学报,1995,6(增刊):108~115
- 9 田永祥.斜压涡旋中的通风气流与热带气旋移动的关系.气象学报,1996,54(1):83~94
- 10 Arakawa A. Computational design for long-term numerical integration for the equations of atmospheric motion. J Comput Physics, 1966, 1: 119 ~ 143

PHYSICAL MECHANISM FOR EFFECT OF TROPICAL CYCLONE INTENSITY ON ITS MOTION

Tian Yongxiang Zhao Yuandong

(Department of Meteorology, NIM, Nanjing 210044)

Abstract The physical mechanism for effect for tropical cyclone intensity on its motion is investigated in a nondivergent barotropic model with no basic flow. The following results are obtained. (1) The large-scale beta gyres in the weak (strong) tropical cyclone are weak (strong) and the ventilation flow speed is small (large). Therefore, its translation speed is slow (fast). (2) The difference between azimuthal phases of large-scale beta gyres in the weak and strong tropical cyclones and the difference between ventilation flow directions are all small. Thus, the difference between their translation directions are also small. (3) The periods of oscillation in translation speed and vacillation in translation direction in the tropical cyclone are close to the active period of small-scale gyres. In the inside area of tropical cyclone, the tangential wind of weak (strong) tropical cyclone is small (large), the active period of small-scale gyres is long (short). Therefore, the frequencies of oscillation in translation speed and vacillation in translation speed and vacil

Keywords tropical cyclone, intensity, effect, motion