南京冬季大气气溶胶的物理特征^{*}

陈金荣 周文贤 安 强

(南京气象学院大气物理学系,南京 210044)

摘 要 根据 1993 年 11 月 15日 ~12 月 10日南京北郊的大气气溶胶粒子的连续 观测资料,分析了大气气溶胶粒子的浓度、日变化、日际变化、谱分布以及降水对大气 气溶胶粒子的湿沉降清除。

关键词 大气气溶胶,物理特征,湿清除

分类号 P421

南京北郊是一个集化工、钢铁、能源等工业的重点地区之一,随着工业的进一步发展,该地 区大气气溶胶粒子日益增多,严重地影响该地区的局地小气候与大气环境质量。为了弄清该地 区大气气溶胶粒子的情况。于 1993 年 11 月 15 日~12 月 10 日用LG-83型多道光学粒子计 数器对该地区的大气气溶胶粒子进行了 26 天的连续观测,每半小时观测一次,每次观测采样 5 次,每次采样 1 min,采样体积 300 ml,用 5 次采样的平均值作为一次观测值,通过对各次观 测值的计算分析,初步得出了该地区冬季大气气溶胶的物理特征。

1 大气气溶胶粒子的浓度及其变化

表 1 为南京北郊和其他地区大气气溶胶粒子浓度的比较,由表 1 可知,南京北郊大气气溶 胶粒子的平均浓度、最大浓度、最小浓度均较重庆、北京等地小,而较香河、兴隆的大(但其中最 小浓度南京的比香河、兴隆的小)¹¹。另外根据观测资料统计,南京北郊大气气溶胶粒子中,粒 径小于或等于 0.4 μ m 的浓度占整个粒子浓度的 40% 左右,粒径大于 0.4 μ m 的浓度占 60% 左 右,大于或等于 8 μ m 的特粗粒子仅占总浓度的 0.01% 左右。由此可见,南京北郊的大气气溶 胶粒径以大于 0.4 μ m 而小于 8 μ m 为主。

	亚均波度(个.cm ⁻³)			样本数
- 0/11				
南京(北郊)	135. 5	247.2	33.0	1 248
重庆	252.7	452.9	84. 9	284
北京	192. 2	357.5	44. 9	
香河	73. 1	101.8	54.2	
兴隆	99.3	231.1	50. 1	

表 1 南京和其他城市大气气溶胶粒子的浓度 Table 1 Concentration of atmospheric aerosol particles for Naniing and other cities

* 气象基金资助项目

收稿日期: 1995-10-11; 改回日期: 1996-04-10

1.1 日变化

大气气溶胶粒子浓度随着气象条件和人类活动的变化而变化, 图 1 为 26 天 01 ~ 24 h 大 气气溶胶粒子浓度的变化情况。

由图 1 可见, 日变化呈两峰两谷型变化, 峰值出现于上午和夜晚, 谷值出现于午后和午夜。 这是因为上午和夜晚大气层结较稳定, 垂直方向湍流输送较弱, 致使大气气溶胶粒子在近地面 层堆积而出现浓度峰值。午后由于地面增温造成近地面层的湍流垂直输送增强, 混合层高度增 高, 从而使地面大气气溶胶粒子浓度减小, 而午夜大气气溶胶粒子浓度较低, 则主要是由于人 类活动造成的影响减少所致。

1.2 日际变化

大气气溶胶粒子浓度除有日变化外,还有日际变化,图2为观测期间26天的浓度变化曲线。由图2可见,每天大气气溶胶粒子浓度都有起伏,造成起伏的原因,主要与天气状况有关,一般在每次降水后,都会出现浓度谷值。

Fig. 1 Daily variation in the aerosol concentration

图 2 大气气溶胶粒子浓度的日际变化 (表降雨日)

2 大气气溶胶粒子谱分布模式的拟合

对大气气溶胶粒子谱分布模式进行数值拟合时,最常用的分布模式是 Deirmendjian 的广 义 Γ函数分布(简称 Γ谱)和 Junge 的幂函数分布(简称 J谱),其表达式分别为

Γ 谱
$$n(D) = \frac{\mathrm{d}N}{\mathrm{d}D} = aD^{\alpha} \exp(-bD^{\gamma})$$
 (1)

J 谱
$$n(D) = \frac{dN}{d\log D} = CD^{\nu}$$
 (2)

(1) 式中 dN 表示单位体积内, 直径在 D 和 D + dD 之间的粒子数; $a (\alpha, b, Y) + A$ 个待定常数。 (2) 式中的 dN 表示单位体积内, 直径在 logD 和 logD + dlogD 之间的粒子数; C, v 是两个待定 常数⁰。将实测大气气溶胶粒子谱, 整段用同一组参数的 Γ 谱或 J 谱拟合(见表 2)。表中 $\epsilon_{0} = \frac{N_{m} - N_{c}}{N_{m}}$ 表示实测粒子浓度 N_{m} 与根据拟合参数计算的粒子浓度 N_{c} 的相对误差(%)。由表 2 可知, 整段用 Γ 谱拟合, 其相对误差 ϵ_{0} 为 71. 6%, 而整段用 J 谱拟合, 其相对误差较 Γ 谱小些 (为 48.9%)。而分段的相对误差均小于整段拟合时的相对误差。还可看出, 在 0.3~1.0 μ m 粒 子段, 用 Γ 谱拟合的相对误差小于 J 谱的, 而在 1.0~10.0 μ m 粒子段, 用 J 谱拟合的相对误差 小于 Γ 谱的。可见大气气溶胶粒子谱在 0.3~1.0 μ m 粒子段较符合 Γ 谱分布, 而在 1.0~10.0 μm 粒子段则较符合 J 谱分布。因此, 将 0.3 ~ 1.0 μm 粒子段用 Γ 谱拟合, 1.0 ~ 10.0 μm 粒子 段用 J 谱拟合, 并用拟合式分别计算出各段的拟合浓度, 两段的拟合浓度相加即为整段粒子的 拟合浓度, 再与实测浓度比较, 求出拟合的相对误差(见表 3)。

表 2 J 谱和 Γ 谱整段和分段拟合误差比较

	Table 2	Comparison	of fitting	errors of the	e whole and	partial ran	ge of J and	dΓspectra%
--	---------	------------	------------	---------------	-------------	-------------	-------------	------------

	0.3 µm< 1	D< 10.0 μm	0. 3 μm< 1	D< 1.0 µm	1.0μm< 1	O< 10.0μm
印 旧	J谱6a	Γ 谱(ϵ_n)	J谱6a	Γ谱(<i>ϵ</i> _n)	J 谱 6a	Γ谱(<i>ϵ</i> _n)
11月15日	32.3	69.7	25.9	22. 1	20. 2	31.9
16日	111.0	48.2	10.2	8.6	32.2	52.1
17日	27.8	56.7	15.9	13.1	31.1	37.0
18日	14.6	74.1	33.2	22.6	10.9	27.6
19日	33.7	72.7	32.1	25.0	15.9	32.9
20日	25.6	91.0	49.7	33.8	34.4	48.7
21日	22.0	81.6	39.5	28.1	16.2	30.3
22 日	14.6	79.2	35.2	28.0	28.0	40. 7
23 日	86.1	79.5	36.8	28.9	22.8	35.1
24 日	1.1	76.9	36.0	28.8	16.6	25.0
25 日	48.3	71.8	23.5	20.7	29.2	43.6
26日	42.7	74.3	30.9	26.2	19.1	36.1
27日	38.9	68.8	30.0	25.2	9.6	24.6
28日	19.8	67.4	29.4	22.2	10.5	21.8
29 日	49.2	67.5	26.6	22. 2	18.8	34. 7
30日	79.7	73.3	29.5	24.6	21.1	45.2
12月01日	75.2	68.0	24.7	20.9	23.8	44.1
02 日	103.0	67.6	18.6	16.3	37.0	57.1
03 日	51.7	67.9	23.9	20.0	28.1	43.1
04 日	80.3	80. 7	37.3	29.0	23.3	33. 5
05 日	13.6	78.8	35.6	29.1	23.2	35.3
06日	21.1	74. 1	30. 2	25.8	19.5	30. 4
07日	48.1	64. 6	21.1	18.4	23.5	36.6
08日	47.0	66. 8	23.4	20.3	23.3	37.0
09日	67.3	72.5	25.1	21.6	29.6	48.1
10日	118.0	68.0	15.1	13.4	47.3	65.7
平 均	48.9	71.6	28.4	22.9	23.7	38.4

由表 3 可知,在 0.3~1.0 μ m 粒子段 Γ 谱拟合式中参数 *a* 变化范围为 4 034~19 112,平 均为 13 318,参数 *b* 的变化范围为 4.75~17.70,平均为 8.91,相关系数平均为 0.98。1.0~ 10.0 μ m 粒子段 J 谱拟合式中参数 *c* 范围为 0.057~23.130,平均为 1.640, *v* 值取值范围为 1.17~4.00,平均为 2.84,相关系数平均为 0.97。将不同方法拟合出的谱形与实测谱形点绘成 图 3,可见整段用 J 谱拟合的曲线 1 与用 Γ 谱拟合的曲线 4 均偏离实测曲线 2 较大,而用分段 拟合方法得出的曲线 3 与实测曲线 2 则较吻合。

表3 分段用 Γ 谱和 J 谱拟合的结果

Table 3 Piecewise fittings of the concentration by Γ and J spectra, separately

立测速度		$Γ$ 谱(0. 3 μ m< D< 1. 0 μ m)					J 谱(1. 0 μ m< D< 10. 0 μ m)					相对		
时间 (拟合 浓度	α	у	a	b	相关 系数	拟合 浓度	с	υ	相关 系数	拟台忌浓度 (个・cm ⁻³)	误差 (%)	
11月1	5日	148.5	168.5	1	0.5	13173	8.15	0.96	4.0	1.870	2.65	0.98	172.5	16.2
1	6日	247.2	29.3	1	0.5	4318	4.75	0.88	29.0	12.000	3.31	0.98	262.4	6.1
1	7日	103.7	104.4	1	0.5	4034	6.40	0.97	8.9	23.130	2.23	0.93	113.2	9.2
1	8日	57.9	62.7	1	0.5	10669	9.28	0.99	1.8	1.210	2.95	0.99	64.6	11.4
1	9日	92.2	104.8	1	0.5	12531	17.70	0.99	2.7	0.245	1.17	0.99	107.5	16.7
2	20日	33.0	38.8	1	0.5	13210	10.80	0.99	0.1	0.374	2.78	0.96	38.9	18.0
2	1日	57.1	65.4	1	0.5	13230	12.30	0.99	0.9	0.057	2.91	0.98	66.3	16.1
2	2日	122.4	143.9	1	0.5	18910	9.54	0.98	2.2	0.825	2.76	0.97	146.3	19.5
2	3日	93.2	109.9	1	0.5	15821	9.79	0.98	1.7	0.621	2.69	0.97	111.6	8.8
2	4日	106.5	125.7	1	0.5	16832	9.60	0.98	2.3	0.813	2.41	0.97	128.1	20.2
2	5日	214.0	242.9	1	0.5	16220	7.74	0.95	0.6	2.340	2.89	0.97	243.6	13.8
2	6日	164.3	193.4	1	0.5	19112	8.77	0.97	3.7	1.630	2.99	0.98	197.1	19.9
2	7日	152.9	176.8	1	0.5	16825	8.67	0.97	4.9	2.260	2.81	0.99	181.8	18.9
2	8日	78.8	86.4	1	0.5	9525	9.07	0.99	3.4	1.370	2.58	0.98	89.7	13.9
2	9日	145.9	164.3	1	0.5	13091	8.20	0.97	5.6	2.390	2.90	0.98	169.9	16.4
3	日 08	148.9	172.8	1	0.5	16082	8.61	0.97	3.5	1.760	3.48	0.99	176.1	18.3
12月0	1日	153.1	171.9	1	0.5	12210	7.90	0.97	5.5	2.480	3.25	0.98	177.4	15.8
0	2日	194.5	211.7	1	0.5	9891	6.85	0.95	7.9	3.160	3.47	0.98	219.6	12.9
0	3日	55.6	64.7	1	0.5	11922	10.50	0.99	0.7	1.260	3.21	0.91	65.4	15.0
0	94 日	74.6	88.0	1	0.5	13190	9.91	0.98	1.2	0.426	2.55	0.97	89.2	19.5
0	5日	119.6	142.8	1	0.5	18130	9.45	0.97	2.1	0.788	2.69	0.97	144.9	21.2
0	6日	163.9	192.0	1	0.5	18251	8.67	0.97	4.0	1.470	2.58	0.98	196.0	19.8
0	7日	191.0	209.6	1	0.5	11720	7.30	0.95	0.9	3.280	2.73	0.97	210.5	10.2
0	8日	194.0	216.7	1	0.5	14161	7.69	0.95	7.9	3.030	2.78	0.97	224.7	15.8
0	9日	176.3	200. 9	1	0.5	14510	7.95	0.96	4.8	2.000	3.21	0.98	205.8	16.7
1	日 0	235.0	250.0	1	0.5	8731	6.16	0.92	10.5	3.620	4.00	0.97	260.4	10.8

3 降水对大气气溶胶粒子的湿清除

降水对大气气溶胶粒子的湿清除是维持大气中悬浮粒子源汇平衡,大气自清洁的重要过程。通常将湿清除率 Λ/h^{-1} 表示为降水强度的指数形式: $\Lambda = EI^{F}$ 。彭红等人计算拟合得到的 $\Lambda - I$ 关系式⁸¹为

$$\Lambda = 0.32I^{0.83}$$
(3)

根据观测期间降雨的平均雨强 0.59 mm \cdot h⁻¹,代入(3) 式得出

$$\Lambda = 0.206 h^{-1}$$
 (4)

由(4)式可以算出降雨期间各个时刻的大气气溶胶粒子浓度(图4)。从图4可见,降雨时的实测大气气溶胶粒子浓度与根据(4)式计算出的大气气溶胶粒子浓度基本一致。

4 结 语

通过对南京北郊冬季大气气溶胶粒子物理特征的分析,得出下列结果 (1)南京北郊冬季大气气溶胶粒子浓度平均为135.5个·cm⁻³,最大为247.2个·cm⁻³,

- Fig. 3 Fittings of aerosol size
- 1. J spectrum fitting; 2. Measured size curve;
- 3. Piecewise fitting; 4. Γ spectrum fitting

- 图 4 降水对大气气溶胶粒子的湿清除
- 1. 非降雨日的平均浓度; 2. 降雨日的实测平均浓度;
- 3. 由湿清除率计算所得平均浓度
- Fig. 4 Removal of atmospheric aerosols during rainfall
- 1. M ean concentration on a fine day;
- 2. M easured mean concentration on a rainy day;
- 3. M ean concentration calculated by moist clearing rate

最小为 33 个 \cdot cm⁻³, 粒径小于或等于 0.4 μ m 的粒子浓度占整个粒子浓度的 40% 左右, 大于 0.4 μ m 的粒子浓度占 60% 左右。平均、最大、最小浓度均较重庆、北京等地低。

(2) 大气气溶胶粒子有明显的日变化与日际变化。

(3)大气气溶胶粒子谱分布在 0.3~1.0 μ m 粒子段用 Deirmenjian 分布模式 n(D) = 13318 exp(- 8.9 $D^{1/2}$) 拟合,而在 1.0~10.0 μ m 粒子段用 Junge 分布模式 $n(D) = 1.64D^{-2.84}$ 拟合较好。分段拟合后的相对误差平均值为 14.5%。

(4) 降水对大气气溶胶粒子的湿清除在平均雨强为 0.59 mm·h⁻¹时清除率为 0.206 h⁻¹, 而由降水前后大气气溶胶粒子浓度变化求出的清除率为 0.181 h⁻¹, 两者基本一致。

参考文献

- 1 陈金荣,周文贤.重庆市区大气气溶胶粒子的时空分布和物理特性.气象科学,1992,12(4):436~444
- 2 朱文琴. 气溶胶粒子谱的观测分析. 大气科学, 1982, 6(2): 217~223
- 3 彭 红,秦 瑜. 降水对气溶胶粒子清除的参数化. 大气科学, 1992, 16(5): 622~630

PHYSICAL CHARACTERISTICS OF WINTERTIME ATMOSPHERIC AEROSOLS AT SUBURBS OF NANJING

Chen Jinrong Zhou Wenxian An Qiang

(Department of Atmospheric Physics, NIM, Nanjing 210044)

Abstract Based on continuous observations of atmospheric aerosols from November 15 to December 10, 1993, study is performed of the concentration, daily/interdaily variations and size, with rainfall getting rid of the particles investigated.

Keywords atmospheric aerosol, physical characteristics, moist clearing